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Environment



August 1, 2022

The World Meteorological 
Organization (WMO) says 
there’s a 93 percent 
chance that one year 
between now and 2026 will 
be the hottest on record. 
Nor will that be a one-off. 
“For as long as we continue 
to emit greenhouse gases, 
temperatures will continue 
to rise,”

https://public.wmo.int/en/media/press-release/wmo-update-5050-chance-of-global-temperature-temporarily-reaching-15%C2%B0c-threshold




Energy per Bit (EPB)



Microprocessors (1970-2020)
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Microprocessors (1970-2020) 
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Microprocessors (1990-2020)

• Number of transistors roughly follow Moore’s law
• Latest Processor Switching energy is 0.36 atto joules/switching/transistor
• Significant benefits are coming from size scaling, while energy per 

switching is off by a factor of 25 over 32 years



Microprocessor (1990-2020): (Normalized)
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• Number of transistors roughly follow Moore’s law
• Latest Processor Switching energy is 0.36 atto joules/switching/transistor
• Significant benefits are coming from size scaling, while energy per 

switching is off by a factor of 25 over 32 years



Energy per Instruction (EPI)



Basis of Analysis

• Two specialized computing 
systems analyzed: AI/ML 
Accelerators and Supercomputers 

– Top down estimates of  Energy per
operation for different instructions
(Int4, Int8, FP16, FP32, FP64)

– Top500 Supercomputer list
including the first exa-scale
computer (HPL and HPCG)

• Analysis are only estimates and
help provide bounds and trends

– Data Analyzed from literature and
shipped products and published
work

– Trends appear consistent across
multiple sources
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(Joule/Switching

/Transistor)
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Maximum/Minimum 22.75 6.64 24.95 26.71 13.30 17.42 321.81

AI/ML Accelerators (2010-2020)
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AI/ML Accelerators & 
Supercomputers



Energy per Application (EPA)
Machine Learning for NLP
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Sevilla, Jaime, et al. arXiv:2202.05924 (2022).
Shankar, Reuther, submitted to IEEE’HPEC (2022)
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# of Floating Point Operations for 
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Microprocessors (1990-2020)



AI/ML Training (1)

• Analysis indicates that the number of 
floating point operations for training 
Machine Learning are rapidly increasing

– ~24 orders of magnitude over 70 years

– ~16 orders of magnitude over 40 years

– ~11 orders of magnitude over 30 years
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AI/ML Training (3)

• Analysis indicates that the number of 
floating point operations for training 
Machine Learning are rapidly increasing

– ~24 orders of magnitude over 70 years

– ~16 orders of magnitude over 40 years

– ~11 orders of magnitude over 30 years

• Floating point operations for training 
Machine Learning are increasing faster 
than any reduction

• Average rough estimates:
– Energy/FP operation ~ 1.0 x 10-12 Joules
– Number of operations for training NLP 

between 2.2 x 10 19 and 2.5 x 1024 (Average 
~1+24)

– Energy required = ~1.0 x 1012 Joules for 
training. = ~3.47 x 105 Kwhr for training



Annual Energy Usage in US 
Cities in 2017 compared to 

ML Training 

Source: Arcadia Power

• Higher than the total monthly electricity 
usage  of the 15 cities

In 2017, Miami had the highest average monthly 
electricity usage with 1,125 kilowatt hours used on 
average. San Francisco had the lowest average 
usage with just 261 kilowatt hours. 

Source: Arcadia Power
Shankar, Reuther, submitted to IEEE’2022



Annual Energy Usage in US 
Cities in 2017 compared to 
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cities

Source: Arcadia Power;



Problem Trajectory 



Energy Consumption: Autonomous Cars
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Autonomous Cars’ Big Problem: 
Medium: May 15, 2019

The energy consumption of edge processing reduces a 
car’s mileage with up to 30%.



Energy Consumption: Communication & Data 
Transfer

S.Shankar

Let N = (V,E) be a network flow and a directed multi-
graph with a source vertex s ∈ V representing the sender and
sink vertex x ∈ V representing the recipient. Each edge a ∈ E
has a capacity ua and energy cost function cE . A network
link’s capacity is its bandwidth; for shipping, we consider the
capacity to be infinite, as vehicles can be added easily.

An edge in a network represents the transmission of data
between two end nodes. An edge in a shipment represents
shipping a package from one location to another. In the latter
case, the edge encompasses any transit locations (through
sorting facilities, for instance) and the combination of vehicles
used to get from one location to another.

We consider a single source with demand Ds < 0 and sink
with demand Dx > 0. Every other vertex is a transit vertex
with demand Dv = 0. Let fa∈E(n) be the flow of a certain
amount of data sent through an edge, as bits or atoms. The
minimum cost flow problem is then to minimize the energy:

minimize
∑

a∈E

fa(n)cE(a)

subject to fa(n) ≤ ua

f(u,v)(n) = −f(v,u)(n)∑

w∈V

f(u,w)(n) = 0 ∀u %= s, x

∑

w∈V

f(s,w)(n) = |Ds| and
∑

w∈V

f(w,x)(n) = |Dx| and |Ds| = |Dx|

VI. EVALUATION

We show energy costs in a small case scenario for varying
storage and transportation options, and demonstrate the use of
the minimum cost flow problem in minimizing energy of a
transfer between two locations.

Table I shows the network equipment values we consider
(from [13, 14]), with Ebit calculated according to Equation 3,
and transportation data with a UPS hybrid delivery van [15], a
large Coca-Cola delivery truck [16], a commercial SUV [17],
a UPS Airlines plane [18, 19], and a 75 kg bicyclist riding at
20 km/h with a 50 kg carrying capacity (energy consumption
obtained from [20]).

TABLE I: Network and physical transport characteristics

Network Equipment

Model Router
Type

B
(Gb/s)

Pmax

(W)
Ebit

(nJ/bit) kJ/TB

Cisco CRS-3 Core 4480 12,300 2.7 21.6
Cisco 7609 Edge 560 4550 8.1 64.8
Cisco C3560CX
12PC-S (12 ports)

Layer 3
Switch 12×1 240 20 160

Physical Transport

Type/Name Weight
(tons)

GVW
(tons)

Load
(tons)

Fuel E.
(km/L) kJ/kg/km

Bicyclist 0.075 - 0.05 - 2.56
Audi SUV 3.0 2.35 0.64 8.08 7.41
UPS Van 5.56 10.43 4.87 4.25 1.85
Delivery Truck 5.26 15.74 10.48 2.39 1.53
Boeing 757-200 - 116 39.8 0.17 5.66

TABLE II: Portable storage characteristics

Type/Name Max. Capacity Weight (kg) Max. Rate
500 GB USB 3.0 [21] 500 GB 0.15 5 Gbps
2 TB USB 3.0 [22] 2 TB 0.95 5 Gbps
Amazon Snowball [23] 80 TB 21.32 10 Gbps
Samsung SSD [24] 512 GB 0.0023 1.5 Gbps, 0.9 Gbps

TABLE III: Setup for the example transfers

NYU→UCSD UChicago→UIC
L3 switches: 6 6
edge routers: 2 2
core routers: 5 1

∆PNode: 20 W 20 W
Bup: 100 Mb/s 100 Mb/s

Bdown: 1 Gb/s 1 Gb/s
ground shipping: 192 km (van) + 14.5 km (van)

4417 km (truck)
personal: 4456.27 km (SUV) 14.5 km (SUV)
personal: - 14.5 km (bicycle)
UPS air: 48.7 km (van) + -

4500 km (plane)
disk for 100 GB: 500 GB USB 3.0 500 GB USB 3.0

Samsung SSD Samsung SSD
disk for 2 TB: 2 TB USB 3.0 2 TB USB 3.0

disk for 50 TB: Snowball Snowball

Table II contains values for the portable storage options
we consider in our analysis. A USB 3.0 connection has a
maximum read and write speed of 5 Gbps according to the disk
manufacturers. Snowball is a proprietary device that transfers
data using a 10 Gbps connection, and consumes 200 W when
powered on. We also consider a record small SSD by Samsung
with 1.5/0.9 Gpbs read/write speed. We assume slower external
disk accesses than internal disk read/write rates.

Consider sending 100 GB, 2 TB, or 50 TB of data from
New York University (NYU) to the University of California
San Diego (UCSD), and from the University of Chicago
(UChicago) to the University of Illinois at Chicago (UIC).
Table III shows the network and shipping parameters.For bits,
we assume three Layer 3 switches, one edge router at each uni-
versity campus, and either five core routers (for NYU→UCSD)
or one core router (for UChicago→UIC). Let ∆PNode be
the power consumption of the sending and receiving server
during the transfer (obtained from [7]). For atoms, we compare
ground shipping, personal delivery, and air shipping. Suppose
UChicago→UIC ground shipping (14.5 km) involves just a
delivery van while NYU→UCSD ground shipping uses a
delivery van from NYU to the sorting facility [25] in Saddle
Brook, NJ (32 km), then a large truck to another sorting facility
in St. Louis, MO (1530 km), another large truck to Riverside,
CA (2887 km), and a delivery van to UCSD (160 km). Each
package could also be personally delivered in an SUV in both
cases, or on a bicycle from UChicago to UIC. For air shipping,
we assume a delivery van between NYU and USDC and the
JFK (26.6 km) and San Diego (22.1 km) airports respectively,
and a single UPS freighter plane (4500 km). All distances
were obtained through Google Maps.

Table IV lists the incremental energy costs for these trans-
fers. The long distance transfer benefits from ground shipping
the most using common storage media (the 2 TB disk, and

3
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More efficient to transfer data in Packages than in Bits

Marincic, Foster, 2016



Energy Consumption: Cryptocurrency Mining
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Energy costs runover driven by computations for “mining”

token increases, solving this puzzle becomes increasingly difficult, requiring more 
computational power and greater energy consumption.4 Bitcoin’s estimated annualized global 
power consumption had increased nearly four-fold between the beginning of 2019 and mid-
June 2022 to as high as 130 TWh, rivaling the total annual electricity usage of countries such 
as Norway and Sweden and reportedly exceeding the total reductions in greenhouse gas 
emissions attributed to electric vehicles.5 The total annual global electricity consumption 
associated with just the two largest cryptocurrencies by market capitalization, Bitcoin and 
Ethereum, has been estimated to be as high as 300 TWh in May 2022, comparable to the 
annual electricity usage of the United Kingdom.6 And this electricity usage has major 
emissions consequences: the energy used to mine Bitcoin and Ethereum in 2021 resulted in 
almost 80 million tons of carbon dioxide emissions.7

Cryptomining facilities’ energy consumption is also causing significant increases in 
energy costs for many small businesses and residents. Cryptomining in the city of Plattsburgh,
New York reportedly resulted in residential electricity bills that were “up to $300 higher than 
usual” in the winter of 2018, leading the city to introduce the nation’s first 18-month 
moratorium on new cryptomining operations.8 A recent study estimates that “the power 
demands of cryptocurrency mining operations in upstate New York push up annual electric 
bills by about $165 million for small businesses and $79 million for individuals.”9 Moreover, 
states like Texas with relatively cheap electricity costs are experiencing an influx of 
cryptomining companies, raising concerns about the state’s unreliable electricity market and 
the potential for cryptomining to add to the stress on the state’s power grid.10

4 The Wall Street Journal, “Bitcoin Miners Are Giving New Life to Old Fossil-Fuel Power Plants,” Brian Spegele 

and Caitlin Ostroff, May 21, 2021, https://www.wsj.com/articles/bitcoin-miners-are-giving-new-life-to-old-fossil-

fuel-power-plants-11621594803. 
5 The New York Times, “Bitcoin Uses More Electricity Than Many Countries. How Is That Possible?” Jon 

Huang, Claire O’Neill, and Hiroko Tabuchi, September 3, 2021, 

https://www.nytimes.com/interactive/2021/09/03/climate/bitcoin-carbon-footprint-electricity.html; Cambridge 

Centre for Alternative Finance, Cambridge Bitcoin Electricity Consumption Index, “Bitcoin network power 

demand,” June 2022, https://web.archive.org/web/20220612070718/https://ccaf.io/cbeci/index/; U.S. Energy 

Information Administration, “Electricity,” https://www.eia.gov/international/data/world/electricity/electricity-

consumption; Digiconomist, “Bitcoin now negating a decade of progress in deploying electric vehicles,” June 27, 

2021, https://digiconomist.net/bitcoin-now-negating-a-decade-of-progress-in-deploying-electric-vehicles/. 
6 NDTV Profit, “Ethereum Upgrade To Cut Energy Consumption By Over 99%: Know More About It,” March 

27, 2022, https://www.ndtv.com/business/ethereum-upgrade-and-energy-consumption-here-s-all-you-need-to-

know-2846026  ;   Digiconomist, “Ethereum Energy Consumption Index,” https://digiconomist.net/ethereum-

energy-consumption; Digiconomist, “Bitcoin Energy Consumption Index,” https://digiconomist.net/bitcoin-

energy-consumption; U.S. Energy Information Administration, “Electricity,” 

https://www.eia.gov/international/data/world/electricity/electricity-consumption. 
7 Forex Suggest.com, “Global Impact of Crypto Trading,” https://forexsuggest.com/global-impact-of-crypto-
trading/.
8 Congressional Research Service, “Bitcoin, Blockchain, and the Energy Sector,” Corrie E. Clark and Heather L. 

Greenley, August 9, 2019, https://crsreports.congress.gov/product/pdf/R/R45863/3. 
9 Berkeley Haas, “Power-hungry cryptominers push up electricity costs for locals,” Laura Counts, August 3, 2021,

https://newsroom.haas.berkeley.edu/research/power-hungry-cryptominers-push-up-electricity-costs-for-locals/.
10 Cointelegraph, “Crypto miners eye cheap power in Texas, but fears aired over impact on the grid,” Samuel 

Haig, June 16, 2021, https://cointelegraph.com/news/crypto-miners-eye-cheap-power-in-texas-but-fears-aired-

over-impact-on-the-grid.

July 15, 2022

The Honorable Michael Regan 
Administrator 
U.S. Environmental Protection Agency 
1200 Pennsylvania Avenue, N.W. 
Room 3426 WJC North
Washington, DC 20460

The Honorable Jennifer Granholm
Secretary 
Department of Energy
1000 Independence Ave. SW
Washington, DC 20585
 

Dear Administrator Regan and Secretary Granholm,
 

We write to provide new information on our investigation of the environmental 
impacts of cryptocurrency mining, and to request that your agencies work together to require 
emissions and energy use reporting by cryptominers.

 
The cryptocurrency market has grown exponentially since first introduced over a 

decade ago.1 Mining operations for Bitcoin, the largest cryptocurrency by market cap, are 
increasingly moving onshore, with the United States’ share of global mining increasing from 
4 percent in August 2019 to nearly 38 percent in January 2022 – meaning that over a third of 
the global computing power dedicated to mining Bitcoin is now drawn from miners in the 
U.S., in part due to a government crackdown in China last year.2

The networks of Bitcoin and many other tokens are secured through a “proof of work” 
algorithm, which involves “miners” using highly-specialized and power-intensive computers 
known as “mining rigs” to verify transactions by solving a mathematical puzzle, with the 
winning miner being rewarded in new tokens.3 As more miners compete and the value of the 

1 MIT Technology Review, “The Cryptocurrency Market Is Growing Exponentially,” Emerging Technology from 

the arXiv, May 29, 2017, https://www.technologyreview.com/2017/05/29/151496/the-cryptocurrency-market-is-

growing-exponentially/.
2 Cambridge Centre for Alternative Finance, Cambridge Bitcoin Electricity Consumption Index, “Bitcoin Mining 

Map,” June 2022, https://cbeci.org/mining_map  ;   CoinMarketCap, “Cryptocurrency Prices, Charts And Market 

Capitalizations,” https://coinmarketcap.com/; The Wall Street Journal, “U.S. Takes Bitcoin Mining Crown After 

China Crackdown,” Caitlin Ostroff, October 27, 2021, https://www.wsj.com/articles/u-s-takes-bitcoin-mining-

crown-after-china-crackdown-11635327002. 
3 CoinDesk, “What Is Proof-of-Work?,” Alyssa Hertig, December 16, 2020, 

https://www.coindesk.com/tech/2020/12/16/what-is-proof-of-work/; The Guardian, “Electricity needed to mine 

bitcoin is more than used by 'entire countries',” Lauren Aratani, February 27, 2021,

https://www.theguardian.com/technology/2021/feb/27/bitcoin-mining-electricity-use-environmental-impact. 
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Number of Devices 
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Total devices doubling by 2025 (~2.25% of World Power of 
17.7 TW)

IoT Analytics, 2020



Amount of Data  

S.Shankar

Computing and Data Storage (~2% of World Needs) both 
need energy

IDC, 2021



Unsustainable Computing Energy Trajectory

S.Shankar

Seismic shift #5: Computing energy is not sustainable

Computing will not be sustainable by 
2040, as its energy requirements would 
exceed the estimated world’s energy 
production
Need: Discover computing 
paradigms/architectures with a radically 
new ‘computing trajectory’ demonstrating 
>1,000,000x improvement in energy 
efficiency. Changing the trajectory not 
only provides immediate improvements 
but also provides many decades of buffer 
and is much more cost effective than 
attempting to increase the world’s energy 
supply dramatically.

Source: SRC Decadal Plan, 2020 12

Why Seismic Shift?



Next Steps



BIT Utilization (1)

• Bits and Instructions
– The number of bits switching per second 

relates to the frequency related to the 
switching rate of all the transistors 

– At the system level, the corresponding 
variable is the number of instructions per 
second

• BIT Utilization
– Instructions per second (IPS) for the 

system are the same as the number of 
bits switching for all the transistors (BPS), 
then the bit utilization (BPS/IPS) will be 
unity. => all bits are proportionally utilized 
for system level instructions
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Shankar, Reuther, submitted to 
IEEE’HPEC (2022)

• Int4 has higher bit utilization
• FP64 has lower bit utilization

BPS = IPS



Map for Energy Efficiency (0)
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Map for Energy Efficiency (1)
Computing

1e−10 1e−04 1e+02 1e+08

Energy Low (per transistor/switching)

Energy High (per transistor/switching)

Energy (Joule/bit) Communication

Energy (Joule/INT8)

Energy (Joule/INT4)

Energy (Joule/FP16)

Energy (Joule/FP32)

Energy (Joule/FP64)

Energy (Joule/FP) HPCG

Energy (J/Information Processing)
                  Normalized by Per Transistor/Switching (Log10)

• Normalized with respect to Energy/transistor/switching 
• Compared to baseline, System shows about 8 orders of magnitude 

higher (does not include application-specific metrics)

Ack: V. Shankar



Map for Energy Efficiency (2)

• Normalized with respect to Energy/transistor/switching 
• Compared to baseline, Quantum-level fast chemical reaction shows 

about 4-7 orders of magnitude lower

Quantum

1e−10 1e−04 1e+02 1e+08

Quantum (Joule/reaction) slow

kBT (Joule/particle) at 1 mK

Quantum (Joule/reaction) fast in BITS

kBT (Joule/particle) at 1K

kBT (Joule/particle) at 100K

kBT (Joule/particle) at 300K

Quantum (Joule/reaction) fast

Energy Low (per transistor/switching)

Energy (J/Information Processing)
                  Normalized by Per Transistor/Switching (Log10)

Ack: V. Shankar



Map for Energy Efficiency (3)

• Normalized with respect to Energy/transistor/switching 
• Compared to baseline, Single neuron/synapse switching shows about 6-

8 orders of magnitude lower

Nature−inspired

1e−10 1e−04 1e+02 1e+08

Human Brain (Joule/Neuron)
 Single Neuron Recognition in BITs

ATP to ADP Energy (J)/molecule

Energy Low (per transistor/switching)

Human Brain (Joules/synapse) Bottom−up

Human Brain (Synpases) Top−down

Energy (J/Information Processing)
                  Normalized by Per Transistor/Switching (Log10)

Ack: V. Shankar



Map for Energy Efficiency (4)

Quantum

Nature-inspired

System 

• Application-specific Architectures, Algorithms
• Materials, Devices
• Heterogeneous Integration/Packaging
• Thermal engineering

• Bottom-up Processing
• Probabilistic and/or Statistical Computing
• Fractal Architectures
• Application-specific Informational basis, Hardware 

• “BIT is more than a bit”

• Cryogenic engineering
• Error Correcting Devices, Hardware, 

Algorithms
• Application-specific Q-Information 

Processing 
• Fermionic Quantum Computing
• Mixed states

• Efficient Q-C/C-Q Converters

Mix and Match 
among the 
3 different lines



Summary
• Energy Efficient Scaling in computing is necessary for both sustainability

and ability to solve realistic problems

• Energy Efficiency Scaling consists of three overlapping components
– Energy/Bit

• (Materials, Devices)

– Energy/Instruction
• (Architecture, Integration, System, Devices)

– Energy/Application
• (Algorithms x Software)

• Multiple innovations at multiple-levels can enable EES
– Headroom for EES exists; Many of the speakers will address

• Current challenges are opening new pathways to an exciting computing 
future!!!
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