U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

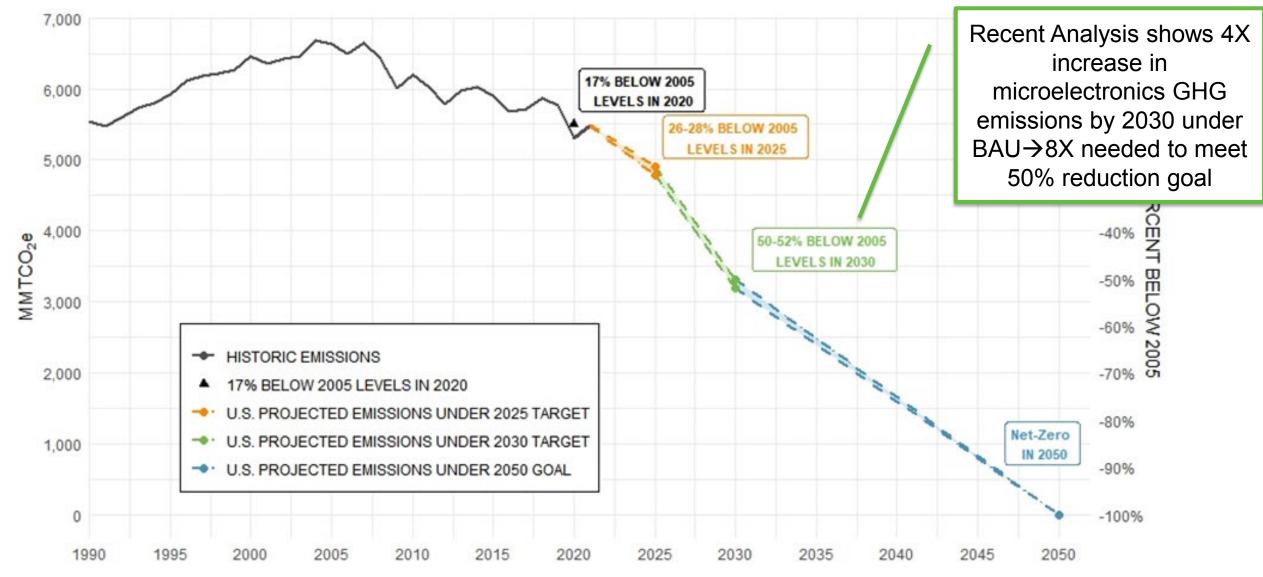
ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE

Welcome to EES2 and FINAL Roadmap Working Group Meeting #9

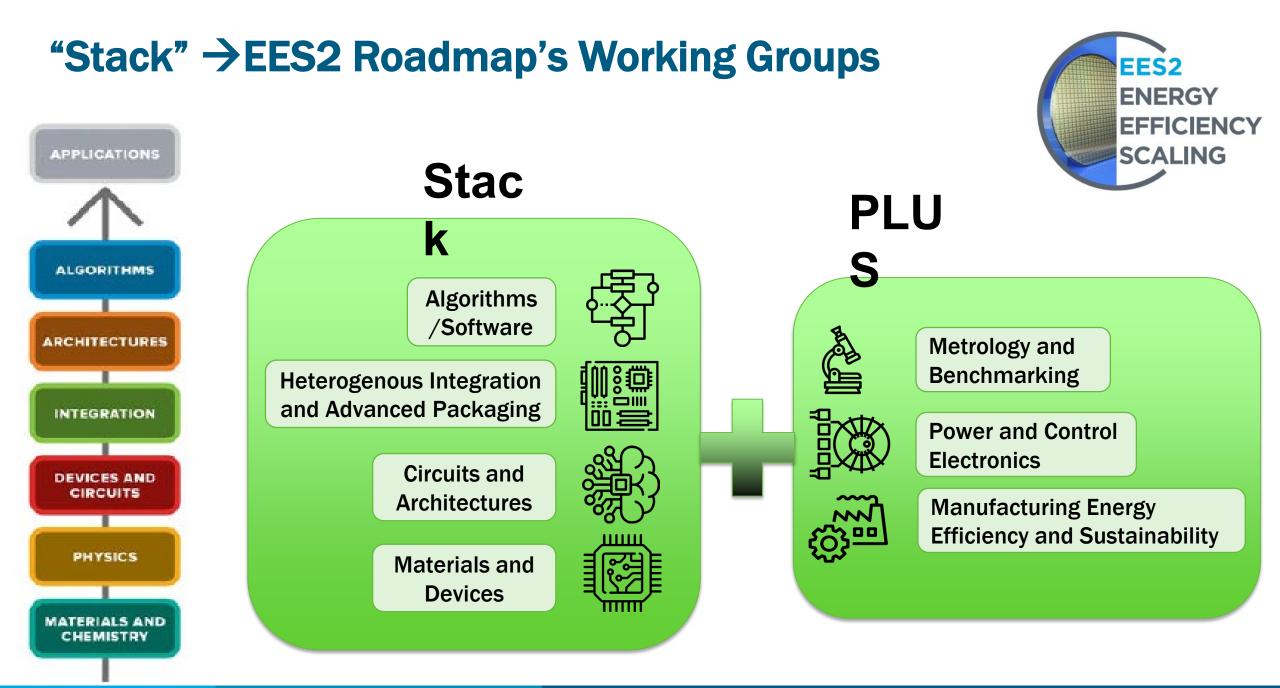
Tina Kaarsberg, PhD EES2 Workshop Co-Chair

August 16, 2023

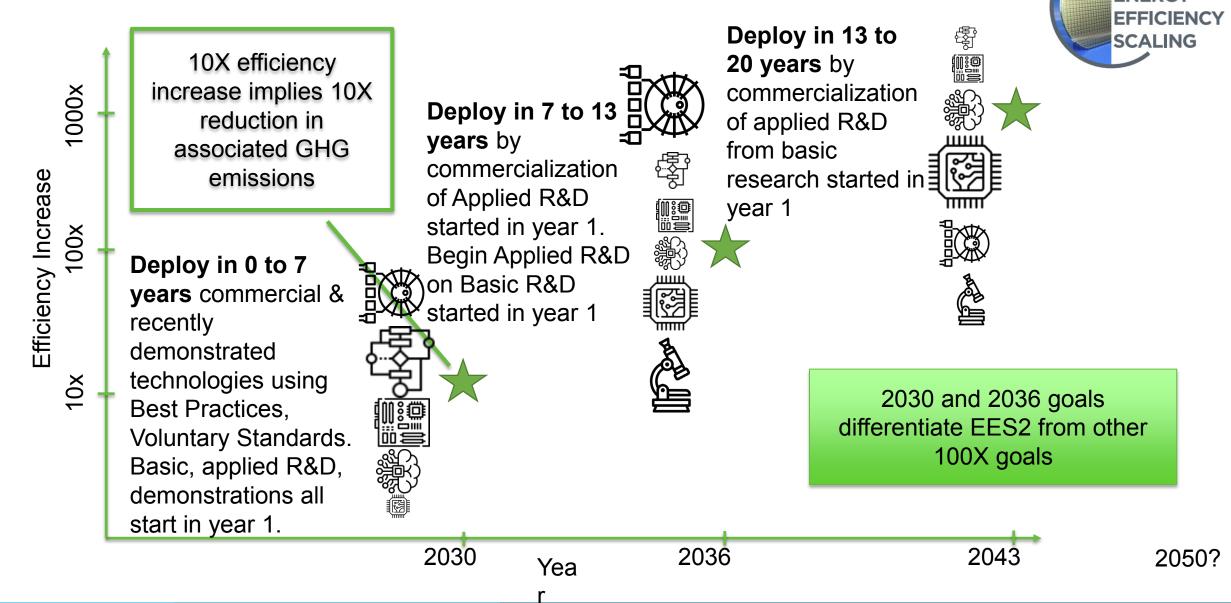
https://microelectronics.slac.stanford.edu/amo-microelectronics

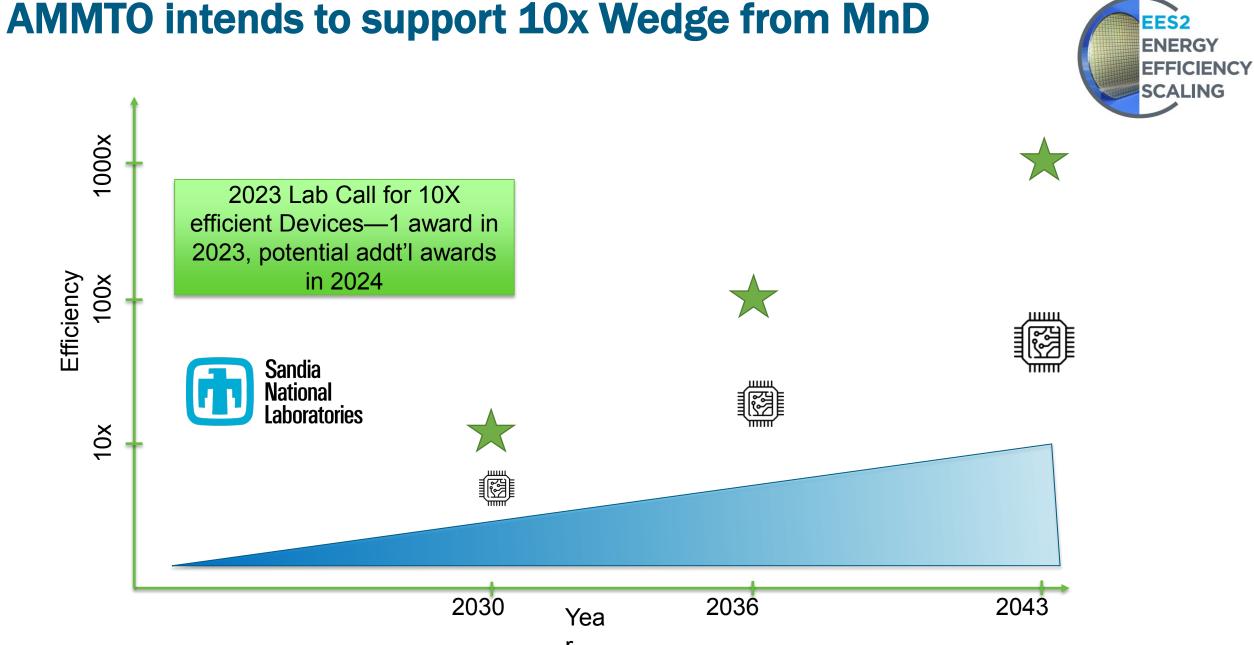

Climate Change: Code RED for Humanity

Last month was the hottest month ever recorded for the planet, this month showed more extreme weather impacts



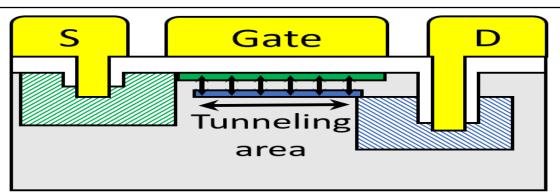
Maui Wildfires


US International Agreements on GHG Reductions



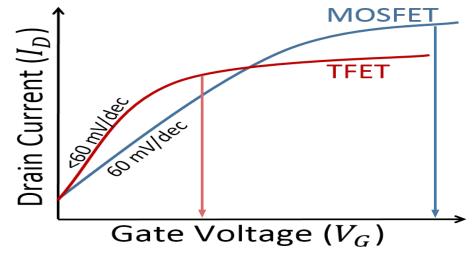
From White hous ergov elege 2021 CReportvalle energy advanced materials and manufacturing technologies office

Under EES2, Microelectronics is doing its part by 2030


Today's Announcement: 1st EES2 R&D Award a 10X Energy Efficient vTFET to replace MOSFET

Technology Summary

Project will experimentally and theoretical verify energy efficiency and speed of a silicon vertical tunnel field effect transistor (vTFET) made using atomic precision advanced manufacturing (APAM). The vTFET reduces the voltage compared to conventional microelectronic transistors by 3X (see figure at right), leading to 10X improvement in fJ/switch. Design leverages the atomically abrupt doping profiles and record-breaking dopant densities achieved by APAM, which also enables the vertical geometry that increases current.



Deliverables

36 months; Federal funding \$4M

Year 1	-Create experimental & modeling platforms
Year 2	-Measure tunneling devices with combinations of gated layers, commercial epi, and APAM epi -Create multi-scale model based on real devices
Year 3	-Demo real vTFET and simulate energy eff. -Contrast commercial and APAM epi for vTFET

Key Performance Metric

3X reduced voltage \rightarrow 10X reduced power consumed by entire processor

Technology Commercialization Strategy

In addition to demonstrating the vTFET, Sandia will build a multi-scale modeling framework, based on real devices, that includes the quantum mechanics of tunneling and enables optimizations to include cost-lowering and performance enhancing features only available to industry. Combined with experimentation on the differences between APAM-based and conventional epitaxy-based devices, Sandia's project will provide industry with the motivation and tools to deploy the vTFET as a 10X energy efficient, general purpose, CMOS-compatible, drop-in alternative to MOSFET. To increase likelihood of industry uptake, Sandia is seeking members for an Industrial Advisory Board.

10x energy efficiency in general purpose, Si-based transistors

And There's More!

WG Results Table to be included in NIST MAPT!

Working Group	Energy Efficiency Technology	Near Term (0-5yrs)	Mid Term (5-10 yrs)	Long Term (10+ yrs)
Materials and Devices	Key Energy Efficient Technologies	CNTFET (logic)	TFET	Analog devices for neuromorphic
	Key Challenges	 Production of pristine and near-pure population of CNTs. Reducing CNT contact resistance. 	 Fabrication of consistent tunnel junction. Currently, variability is high. Demonstration of high on/off ratio and low voltage operation. 	 Down-selecting from a wide breadth of materials, designs, and approaches that fit need. Performance loss during integration with conventional technologies.
	Key Energy Efficient Technologies	Domain Specific Architectures	EDA	Compute in Memory
Circuits and Architectures	Key Challenges	 Architecture is set up after software ASICs are not adaptable to other systems 	 Simulation of device function is limited 3D stacked technologies are lacking 	 Technology is available, however software difficulties are preventing integration
	Key Energy Efficient Technologies	Advanced Thermal Interface Materials	CNT Global Interconects	Monolithic Integration
Advanced Packaging and Heterogeneous Integration	Key Challenges	 Thermal resistance at interfaces is poorly understood CTE material mismatch can cause cracking and lowering heat removal 	 Contact resistance between CNT/Metal is high and poorly understood Deposition methods for vertical CNT's require high temperatures which may not be BEOL compatible 	 Thermal management during operation Higher tiered technology has lower performance due to thermal budget constraints

Still More!Preliminary Version for WG ReviewWG Results Table to be included in NIST MAPT!

Working Group	Energy Efficiency Technology	Near Term (0-5yrs)	Mid Term (5-10 yrs)		Long Term (10+ yrs)
	Key Energy Efficient Technologies	Resource-Aware Workload Scheduling	Improved Tra	aining Algorithms	Optimization of memory access in algorithms
Software and Algorithms	Key Challenges	Near-real-time resource availability	 Achieving c Data/dimenspecificity 	ontinual/sequential learning nsional reduction and	 Optimization depends on architecture Software compatibility
Power and Control Electronics	Key Energy Efficient Technologies	End-to-end power delivery for data centers	Use of wide bandgap power devices and optimized technologies		Power deliery for photonic integrated circuits
	N	Metrology Technology Approach			Challenges
				 Bridging the gap between i system performance. 	dealized system metrology and actual

All metrology	 Bridging the gap between idealized system metrology and actual system performance. Dearth of samples to develop new metrology techniques. Avoid excessive measurements, understanding process dependency to capture only what's necessary.
3D metrology (thermal, interface, etc.)	 Inability to evaluate properties of interest at inaccessible points within 3D structures without typically resorting to destructive techniques. Very large data sets from 3D metrology – hard to manage.
Material property measurements, including thin film and patterned	 Inaccuracy of material and interface properties that are used in computational models of 3D structures.
materials	 Most material property measurements based on bulk materials, when using these materials in real systems, they are at micro/nano scales (i.e., thin films) where material properties are different.