Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract LLNL-PRES-829319.

HPC A ENERGYINNOVATION

National Laboratories Partner with U.S. Industry to Increase Innovation and Energy Efficiency

Aaron FisherActing Director HPC4EnergyInnovation

HPC4EI connects the DOE HPC ecosystem to US industry

https://hpc4energyinnovation.llnl.gov/

HPC4EI has established an efficient process for DOE Labs to partner with industry

Submit Full

Proposal

Execute

PI Secures

HPC

Resources

- Two solicitations a year
 - AMMTO, IEDO, FECM

Technical

Review

- \$400k / Project
- ~\$6M /yr Budget
- 11 participating National laboratories
- 150+ projects funded with 90+ companies over 7 years

Award

Visit our website for solicitation details

FOA is expected soon!

Topics

- •••
- Improvements in semiconductor technologies that will result in operational energy efficiency improvements, supporting achieving the goals of <u>EES2</u>

Questions can be sent to hpc4ei@llnl.gov

Join the <u>hpc4ei-info@llnl.gov</u> distribution lists via the web to receive program announcements

www.hpc4energyinnovation.org

Post-exascale System Architectures: Hardware overprovisioning and energy efficiency EES2 Meeting

20 July 2023

Barry Rountree and Tapasya Patki {rountree|patki1}@llnl.gov Center for Applied Scientific Computing

Total Power Consumption of Broadwell Quartz Supercomputer Nov 2017 to May 2023

Total Power Consumption of Broadwell Quartz Supercomputer Nov 2017 to May 2023

Power Swings with the Covid-19 workflow with LBANN on Sierra

1 second sample for 6h (21500 samples) on Oct 7, 2020

Power Swings with the Covid-19 workflow with LBANN on Sierra

TDP (Thermal design point, worst-case consumption)

Supercomputers in a facility have different worst-case electrical requirements

Current power allocation

Current power allocation

Observed peak power

Current power allocation

Observed peak power

Observed average power

Current power allocation

Observed peak power

Observed average power

Hardware overprovisioning with static, machine-wide power caps

Electrical Capacity

TDP (Thermal design point, worst-case consumption)

No energy savings

Modest efficiency increase

Current power allocation

Observed peak power

Observed average power

Hardware overprovisioning with static, machine-wide power caps

Dynamic hardware overprovisioning allows redeployable computing

Dynamic hardware overprovisioning allows redeployable computing

Provisioned for peak power

NABC

- Need
 - Increase compute capacity within the existing facility envelopes
- Approach
 - Apply existing hardware and system controls to cap power and waste heat
 - Level 1: Static, machine-wide caps
 - Level 2: Dynamic machine caps, static job caps
 - Level 3: Dynamic job caps, uniform node caps
 - Level 4: Dynamic node caps
- Benefit
 - More FLOPs, use the capacity we've already paid for
- Competition
 - Cloud computing approaches

power-aware machine scheduling power-aware scheduling power-aware runtime systems

LLNL Software Stack

LDMS (Lightweight Distributed Metric Service)

Flux (resource manager and job scheduler)

GEOPM (Global Extensible Open Power Manager)

Variorum (multi-architecture power interface library)

msr-safe (kernel module)

Site

Lessons Learned

- DOE NNSA labs care about energy efficiency.... to a point
 - Efficient machine design is important
 - Once the machine is delivered, run it as fast as possible
- Measure total system energy, not just CPU/GPU energy
 - Faster algorithms are (almost) always more energy efficient
- Respect diversity of optimization goals
 - Speed, turnaround time, throughput need different strategies
- Energy efficiency matters most when energy is a constraint

Open Questions

- How to simultaneously schedule jobs, energy, hardware, and time?
- How much is performance reproducibility worth?
- What replaces "node hours" for user accounting and prioritization?
- How much complexity/choice should be revealed to users?
- How to we guarantee safe operation?