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Outline
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▪ Computer Language Efficiency and Software Optimization 

▪ Interaction between Software and Architecture

▪ Importance of Architecture in “Novel Compute”

▪ Workloads/Benchmarks to Measure Power Use
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Pereira, Rui, et al., Ranking Programming Languages by Energy Efficiency, Science of Computer Programming
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Not all Python code runs only 

Python
Alternatives to Interpreted Python

Implemented in C/C++Python



Software Performance Example
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From: Jon Bentley, Programming Pearls:  Perspective on Performance, Communications of the ACM, Volume 27, Issue 11, November,1984



Software Performance Example
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From: Jon Bentley, Programming Pearls:  Perspective on Performance, Communications of the ACM, Volume 27, Issue 11, November,1984



Implications of Inefficient Software
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Lee, Victor, et al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU, ISCA ‘10: 

Proceedings of the 37th annual International Symposium on Computer Architecture, June, 2010. 



Interaction of Software and CPU Architecture
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Instruction Queue
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Instruction Decode
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Int
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L1 Inst. Cache

L2 Data Cache

int foo(unsigned int *a, unsigned int *b)

{

return *a + *b; 

}

; %r1 – r4 input registers, %r0 return reg

__foo: 

ld [%r1], r5       ; *a -> register 5

ld [%r2], r6       ; *b -> register 6

add %r5, %r6, %r0  ; add,sum in return reg

ret

Things I am not including:  structures for handing out-of-order 

instruction dispatch, branch predictors, data and instruction TLBs, 

last-level caches, memory controller… and many other things.
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C Example

Compiled code to execute foo()

Toy CPU Architecture



Parts of a CPU to execute foo()
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__foo: 

ld [%r1],%r5       

ld [%r2],%r6       

add %r5, %r6, %r0 

ret

Instruction Queue

ST

Instruction Decode
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First call to foo() Second call to foo()

(same arguments)

Instruction Use Data Use



Architecture for SFQ-based Computing
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https://discoverexpedition.usc.edu/index.php/isca-tutorial-2023/

https://discoverexpedition.usc.edu/index.php/isca-tutorial-2023/


Software Enablement Example:  Quantum (IBM)
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Li, Ang, et. al, QASMBench: A Low-level QASM Benchmark Suite for 

NISQ Evaluation and Simulation, https://arxiv.org/abs/2005.13018

Cross, Andrew, et al., OpenQASM 3:  A Broader and Deeper Quantum 

Assembly Language, ACM Transactions on Quantum Computing, 

Volume 3 Issue 3, September 2022.  



KU Leuven:  Prototyping Neuromorphic Compute
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Multi-core ML Platforms and Custom Compilation Infrastructure -- https://micas.esat.kuleuven.be/research/domains/hardware-efficient-ai-and-ml

https://micas.esat.kuleuven.be/research/domains/hardware-efficient-ai-and-ml


Inspiration:  Exascale Reading List
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ECP Software Technology Capability Assessment Report 

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdfhttps://people.eecs.berkeley.edu/~yelick/papers/Exascale_final_report.pdf

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf
https://people.eecs.berkeley.edu/~yelick/papers/Exascale_final_report.pdf


Driving Use Cases across Multiple Domains
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Domain Software Benchmarks

AI/ML

• Frameworks

• ML Compilers

• Integrating new AI/ML 

accelerators

• Data prep techniques

• MLCommons benchmarks

• NeuroBench

• DataPerf

• Domain-specific

• Training/Inference perf tests Models for Science? 

Cloud

(“Datacenter Tax”)

• Open Source

• ”Cloud” versions of enterprise 

apps 

• REST API services 

• Fleet Bench (Google)

• Others should be coming out soon

HPC [Pick some target kernels] [based on kernels picked]

Enterprise

• Enterprise-class Database

• In-Memory Databases

• Back-Office Applications 

• Supply Chain

• CRM

• TPC Benchmarks (C, E, H, DS)

• SpecJBB

• SpecVIRT/Vm

• VMmark Virtualization 

What domains are we missing? 



Software Improving Power Use
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• Better performance tools: reduce time to 

optimization 

• Tools to optimize for power or identify high-

lower code 

• AI-assisted software development wizards

• Curate better datasets to train more efficiently

• Optimize model development 

• AI-assisted algorithmic exploration 

• Software Performance Engineering (e.g., MIT 

6.016)

• Classes or contests to design applications 

(and systems) to minimize power use

• Infrastructure software for managing 

resources for power-efficiency  

• Runtime management of jobs 

• Neuromorphic

• Differential Analyzer

• Reservoir Computing

• Ising Rings in CMOS

• Silicon Photonics Analog (AI Inference)

• Content Addressable Processors

• Logic circuits in yeast

• Architectures yet to be proposed

Enabling New or Old Architectures  Optimize Software/Model Development 

Managing Infrastructure  Power Education for Software Optimization



Summary
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▪ Software optimization and algorithm happens continually and has been happening for a long time

▪ Specifying the interaction between software and novel hardware architectures is vitally important to 

enable new devices/new materials to find use cases with material benefits and understand impact 

on overall system design

▪ Any hardware solution has a tension between specificity and generality

▪ Software and Algorithms will help to enable new hardware, but need help to speed up on existing 

hardware 
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https://twitter.com/BeingHorizontal/status/1152797848850710531
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