
© 2022 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are

subject to change without notice. Micron, the Micron logo, and all other Micron trademarks are the

property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

1

July 20, 2023

Brian Hirano

EES2: Software and Algorithms

Outline
2

▪ Computer Language Efficiency and Software Optimization

▪ Interaction between Software and Architecture

▪ Importance of Architecture in “Novel Compute”

▪ Workloads/Benchmarks to Measure Power Use

3

Pereira, Rui, et al., Ranking Programming Languages by Energy Efficiency, Science of Computer Programming

4

Not all Python code runs only

Python
Alternatives to Interpreted Python

Implemented in C/C++Python

Software Performance Example
5

From: Jon Bentley, Programming Pearls: Perspective on Performance, Communications of the ACM, Volume 27, Issue 11, November,1984

Software Performance Example
6

From: Jon Bentley, Programming Pearls: Perspective on Performance, Communications of the ACM, Volume 27, Issue 11, November,1984

Implications of Inefficient Software
7

Lee, Victor, et al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU, ISCA ‘10:

Proceedings of the 37th annual International Symposium on Computer Architecture, June, 2010.

Interaction of Software and CPU Architecture
8

Instruction Queue

ST

Instruction Decode

LD

Int

Scheduler

FP L1 Data Cache

L1 Inst. Cache

L2 Data Cache

int foo(unsigned int *a, unsigned int *b)

{

return *a + *b;

}

; %r1 – r4 input registers, %r0 return reg

__foo:

ld [%r1], r5 ; *a -> register 5

ld [%r2], r6 ; *b -> register 6

add %r5, %r6, %r0 ; add,sum in return reg

ret

Things I am not including: structures for handing out-of-order

instruction dispatch, branch predictors, data and instruction TLBs,

last-level caches, memory controller… and many other things.

M
e

m
o

ry

C Example

Compiled code to execute foo()

Toy CPU Architecture

Parts of a CPU to execute foo()
9

Instruction Queue

ST

Instruction Decode

LD

Int

Scheduler

FP

M
e

m
o

ry

__foo:

ld [%r1],%r5

ld [%r2],%r6

add %r5, %r6, %r0

ret

Instruction Queue

ST

Instruction Decode

LD

Int

Scheduler

FP

M
e

m
o

ry

First call to foo() Second call to foo()

(same arguments)

Instruction Use Data Use

Architecture for SFQ-based Computing
10

https://discoverexpedition.usc.edu/index.php/isca-tutorial-2023/

https://discoverexpedition.usc.edu/index.php/isca-tutorial-2023/

Software Enablement Example: Quantum (IBM)
11

Li, Ang, et. al, QASMBench: A Low-level QASM Benchmark Suite for

NISQ Evaluation and Simulation, https://arxiv.org/abs/2005.13018

Cross, Andrew, et al., OpenQASM 3: A Broader and Deeper Quantum

Assembly Language, ACM Transactions on Quantum Computing,

Volume 3 Issue 3, September 2022.

KU Leuven: Prototyping Neuromorphic Compute
12

Multi-core ML Platforms and Custom Compilation Infrastructure -- https://micas.esat.kuleuven.be/research/domains/hardware-efficient-ai-and-ml

https://micas.esat.kuleuven.be/research/domains/hardware-efficient-ai-and-ml

Inspiration: Exascale Reading List
13

ECP Software Technology Capability Assessment Report

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdfhttps://people.eecs.berkeley.edu/~yelick/papers/Exascale_final_report.pdf

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf
https://people.eecs.berkeley.edu/~yelick/papers/Exascale_final_report.pdf

Driving Use Cases across Multiple Domains
14

Domain Software Benchmarks

AI/ML

• Frameworks

• ML Compilers

• Integrating new AI/ML

accelerators

• Data prep techniques

• MLCommons benchmarks

• NeuroBench

• DataPerf

• Domain-specific

• Training/Inference perf tests Models for Science?

Cloud

(“Datacenter Tax”)

• Open Source

• ”Cloud” versions of enterprise

apps

• REST API services

• Fleet Bench (Google)

• Others should be coming out soon

HPC [Pick some target kernels] [based on kernels picked]

Enterprise

• Enterprise-class Database

• In-Memory Databases

• Back-Office Applications

• Supply Chain

• CRM

• TPC Benchmarks (C, E, H, DS)

• SpecJBB

• SpecVIRT/Vm

• VMmark Virtualization

What domains are we missing?

Software Improving Power Use
15

• Better performance tools: reduce time to

optimization

• Tools to optimize for power or identify high-

lower code

• AI-assisted software development wizards

• Curate better datasets to train more efficiently

• Optimize model development

• AI-assisted algorithmic exploration

• Software Performance Engineering (e.g., MIT

6.016)

• Classes or contests to design applications

(and systems) to minimize power use

• Infrastructure software for managing

resources for power-efficiency

• Runtime management of jobs

• Neuromorphic

• Differential Analyzer

• Reservoir Computing

• Ising Rings in CMOS

• Silicon Photonics Analog (AI Inference)

• Content Addressable Processors

• Logic circuits in yeast

• Architectures yet to be proposed

Enabling New or Old Architectures Optimize Software/Model Development

Managing Infrastructure Power Education for Software Optimization

Summary
16

▪ Software optimization and algorithm happens continually and has been happening for a long time

▪ Specifying the interaction between software and novel hardware architectures is vitally important to

enable new devices/new materials to find use cases with material benefits and understand impact

on overall system design

▪ Any hardware solution has a tension between specificity and generality

▪ Software and Algorithms will help to enable new hardware, but need help to speed up on existing

hardware

17

https://twitter.com/BeingHorizontal/status/1152797848850710531

References
18

Pereira, Rui, et al., Ranking Programming Languages by Energy Efficiency, Science of Computer Programming, volume 205. Elsevier, 2021.

Benchmarking and Workload Characterization, https://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/ (broken link)

Lee, Victor, et al., Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU, ISCA ‘10: Proceedings of the 37th annual International Symposium on Computer
Architecture, June 2010, https://doi.org/10.1145/1815961.1816021

Anonymous, Mojo – a new programming lanuage for all AI developers, https://www.modular.com/mojo.

Cinder Github page, https://github.com/facebookincubator/cinder.

Codon Github page, https://github.com/exaloop/codon.

Bentley, Jon, Programming Pearls: Perspective on Performance, Communications of the ACM, November 1984, Volume 21 Number 1, https://dl.acm.org/doi/pdf/10.1145/1968.381154.

Bentley, Jon, Programming Pearls: The Envelope is Back, Communications of the ACM, March, 1986, Volume 29 Number 3. https://dl.acm.org/doi/pdf/10.1145/5666.315593.

Jon Bentley, MIT, 6.172 (now 6.106) Tuning a Traveling Salesman Problem Algorithm, https://www.youtube.com/watch?v=SS5KfIFzfEE.

Cross, Andrew, et al., OpenQASM 3: A Broader and Deeper Quantum Assembly Language, ACM Transactions on Quantum Computing, Volume 3 Issue 3, September 2022.

Li, Ang, et. al, QASMBench: A Low-level QASM Benchmark Suite for NISQ Evaluation and Simulation, https://arxiv.org/abs/2005.13018.

McSherry, Frank, et al., Scalability! But at what COST?, 15th Workshop on Hot Topics in Operating Systems, 2015, https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf.

Dean, Jeffrey, Barroso Luiz André, The Tail at Scale, Communications of the ACM, Volume 56, No. 2, February, 2013, https://dl.acm.org/doi/pdf/10.1145/2408776.2408794.

Kanev, S, et al., Profiling a warehouse-scale computer, 2014, ISCA '15 Proceedings of the 42nd Annual International Symposium on Computer Architecture, https://research.google/pubs/pub44271/.

Lucas, Ising formulations of many NP problems, Frontiers in Physics, vol. 2, 2014. [Online]. Available: https://doi.org/10.3389%2Ffphy.2014.00005.

Foster, Caxton C (1976), Content Addressable Parallel Processors, Van Nostrand Reinhold, ISBN 0-442-22433-8.

Gander, M., Vrana, J., Voje, W. et al. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 8, 15459 (2017). https://doi.org/10.1038/ncomms15459.

https://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/
https://doi.org/10.1145/1815961.1816021
https://www.modular.com/mojo
https://github.com/facebookincubator/cinder
https://github.com/exaloop/codon
https://dl.acm.org/doi/pdf/10.1145/1968.381154
https://dl.acm.org/doi/pdf/10.1145/5666.315593
https://www.youtube.com/watch?v=SS5KfIFzfEE
https://arxiv.org/abs/2005.13018
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://dl.acm.org/doi/pdf/10.1145/2408776.2408794
https://research.google/pubs/pub44271/
https://doi.org/10.3389%2Ffphy.2014.00005
https://archive.org/details/contentaddressab0000fost
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-442-22433-8
https://doi.org/10.1038/ncomms15459

19

	Slide 1: EES2: Software and Algorithms
	Slide 2: Outline
	Slide 3
	Slide 4
	Slide 5: Software Performance Example
	Slide 6: Software Performance Example
	Slide 7: Implications of Inefficient Software
	Slide 8: Interaction of Software and CPU Architecture
	Slide 9: Parts of a CPU to execute foo()
	Slide 10: Architecture for SFQ-based Computing
	Slide 11: Software Enablement Example: Quantum (IBM)
	Slide 12: KU Leuven: Prototyping Neuromorphic Compute
	Slide 13: Inspiration: Exascale Reading List
	Slide 14: Driving Use Cases across Multiple Domains
	Slide 15: Software Improving Power Use
	Slide 16: Summary
	Slide 17
	Slide 18: References
	Slide 19

