EES2: Software and Algorithms

July 20, 2023

Brian Hirano

© 2022 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are
subject to change without notice. Micron, the Micron logo, and all other Micron trademarks are the
property of Micron Technology, Inc. All other trademarks are the property of their respective owners.

chrom

Outline

« Computer Language Efficiency and Software Optimization
« Interaction between Software and Architecture
« Importance of Architecture in “Novel Compute”

= Workloads/Benchmarks to Measure Power Use

AAicron

Table 4: Normalized global results for Energy, Time, and Memory

Total |

Energy (J) Time (ms) Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C4++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (c) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c¢) Pascal 2.14 (¢) Chapel 2.14 (¢) Ada 1.47
(¢) Chapel 2.18 (e) Go 2.83 (c) Rust 1.54
(v) Lisp 2.27 (c) Pascal 3.02 (v) Lisp 1.92
(¢) Ocaml 2.40 (c) Ocaml 3.00 (c) Haskell 2.45
(c) Fortran 2.52 (v) C# 3.14 (i) PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Saarifh 71
(¢) Haskell 3.10 (c) Haskell 3.65 q (i) Python 2.80
(v) C# 3.14 () Swift 4.20 (c) I vR:P)
(c) Go 3.23 (c¢) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(vy F# 4.13 (i) JavaScript 6.52 (+v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(1) TypeScript 21.50 (i) Hack 26.99 (v) F 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(iy PHP 29.30 (v) Erlang 36.71 (i) TypeScript 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(1) Rubx £9 91 (i) Perl 65.79 (v) Erlang 7.20
@ Python 75.88 () Python TLODD (i) Dart 8.64
(i) Perl 9.0 (i) 52,91 (i) Jruby 19.84

Pereira, Rui, et al., Ranking Programming Languages by Energy Efficiency, Science of Computer Programming

AMicron

Not all Python code runs only

Python Alternatives to Interpreted Python

<A NVIDIA. RAPJDS -
Machine Learning to Deep Learning: All on GPU M OJ O 6
PYTHON AND JAVA ,'
cinder

lumplememed i Cicss ju I i.é
@gthon co don

AXicron

Software Performance Example

TABLE |. Summary of Appel’s speedups

Algenthms ancl Data Structures | 12 A bm ary tree reduces O(N‘*) tlme to
Algortthm Tunmg R RO AT :Use larger ttme steps

Data Structure Heﬂrgan:zatlon - “Produce clusters well-surted to the |
RS oL e tree algcmthm -
System—lndependent Ccde Tumng 2 Repiace deubie—premsmn ﬂoatmg
“ 7 point with single precision -

_Systemoependent Cade Tumng - | 25 o | :F!ecode. the critical procedure in

o | | - ~ -assembly language
Hardwara o .-ﬁ ... 2 Usea floating-point accelerator
Tota .. S 400

From: Jon Bentley, Programming Pearls: Perspective on Performance, Communications of the ACM, Volume 27, Issue 11, November,1984 7
(I(V icron

Software Performance Example

total speedup factor of 400; Appel’s final program runs a
10,000-body simulation in about one day. The speedups
were not free, though. The trivial O(N?) algorithm may
be expressed in a few dozen lines of code, while the
fast program required 1,200 lines of Pascal. The design
and implementation of the fast program required sev-
eral months of Appel’s time. The speedups are summa-
rized in Table 1.

From: Jon Bentley, Programming Pearls: Perspective on Performance, Communications of the ACM, Volume 27, Issue 11, November,1984 7
(I(V icron

Implications of Inefficient Software

e We reexamine a number of claims [9, 19, 21, 32, 42, 45,
47, 53] that GPUs perform 10X to 1000X better than CPUs
on a number of throughput kernels/applications. After tun-
ing the code for BOTH CPU and GPU, we find the GPU
only performs 2.5X better than CPU. This puts CPU and
GPU roughly in the same performance ballpark for through-

put computing.

Lee, Victor, et al., Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU, ISCA ‘10:
Proceedings of the 37th annual International Symposium on Computer Architecture, June, 2010. ﬂlcron“

C Example

int foo(unsigned int *a, unsigned 1int *b)

{

return *a + *b;

}

Compiled code to execute foo()

; %rl - r4 input registers, %r0 return reg
__foo:

1d [%rl], r5 ; *a -> register 5

1d [%r2], r6 ; *b -> register 6

add %r5, %r6, %r0 ; add,sum in return reg
ret

Interaction of Software and CPU Architecture

Toy CPU Architecture

A

Instruction Queue

\ 4

Instruction Decode

N
Q)

1
A

\ 4

Scheduler

Int

m
-

> LD
FP ‘
> ST

Things | am not including: structures for handing out-of-order
instruction dispatch, branch predictors, data and instruction TLBs,

last-level caches, memory controller... and many other things.

\ 4

Memory

AAicron

Parts of a CPU to execute foo ()

__foo:

1d [%rl],%r5
1d [%r2],%r6
add %r5, %ro,
ret

Qo

P

0

| Instruction Queue FJ_ _

\ 4

Instructio

n Decode |

\ 4

1

Scheduler

Int

FP

> LD
| ST |

ST

First call to foo ()

Instruction Use

v

Memory

| Instruction Queue PJ__

\ 4

Instruction Decode |

\ 4

| Scheduler |
A
\ 4 \ 4 j'
ﬁ LD |
Int FP

Second call to foo ()
(same arguments)

Data Use

v
Memory

AAicron

Architecture for SFQ-based Computing

ISCA Tutorial 2023

Design and Integration of Superconductive Computation for Ventures beyond Exascale Realization

The success of CMOS has overshadowed nearly all other solid-state device innovations over recent
decades. With fundamental CMOS scaling limits close in sight, the time is now ripe to explore disruptive

computing technologies. As a viable post-CMOS computing technology, superconductor electronics can —
deliver ultra-high performance and energy efficiency at scale, thereby paving the way for seminal D S « @y E R
E

innovations in integrated electronics, sustainable exascale computing, and acceleration of machine
pedition

design of a superconductive system of cryogenic computing cores (SuperSoCC), which is the focus of a B GO IR] (7Y
recently awarded NSF Expeditions in Computing award. To demonstrate SuperSoCC, a slew of challenges e | S L& i3]
related to physical scaling, chip-level integration, compact modeling and design tool support, on-chip ‘ & £ = S

memory design, architecture design, and full-system design and integration including interfacing to room

temperature electronics must be addressed. These issues will be addressed through a series of talks given

by experts in the field. ISCA 2023
Location: Marriott World Center Orlando Orlando, Florida
Date: Sunday June 18, 2023

Time: 1:30 - 4:30 PM

Agenda:

learning. This half-day tutorial will cover the challenges and opportunities associated with the first-time

® 3:10 - 3:45 PM | Murali Annavaram (USC): Architectural Implications of Superconductive Electronics

® 3:45-4:20pm | Dilip Vasudevan (LBNL): Design of the Building Blocks for the Superconducting Imaging

Processing System Using Temporal Logic

https://discoverexpedition.usc.edu/index.php/isca-tutorial-2023/

AAicron

https://discoverexpedition.usc.edu/index.php/isca-tutorial-2023/

Software Enablement Example: Quantum (IBM)

from qiskit import gasm3, QuantumCircuit, transpile

Creating a bell circuit
qc_bell = QuantumCircuit(2, 2)
gc_bell.h(@)

qc_bell.cx(@, 1)
gc_bell.measure(@, @)
qc_bell.measure(@, 1)

qc_bell = transpile(gc_bell, backend)
gc_bell.draw(output="mp1l", idle_wires=False)

Global Phase: n/4

Cross, Andrew, et al., OpenQASM 3: A Broader and Deeper Quantum
Assembly Language, ACM Transactions on Quantum Computing,
Volume 3 Issue 3, September 2022.

11

Benchmark

Description

Algorithms

adder

Quantum ripple-carry adder

Quantum Arithmetic

basis_change

Transform the single-particle baseis of an linearly connected electronic structure

Quantum Simulation

basis_trotter

Implement Trotter steps for molecule LiH at equilibrium geometry

Quantum Simulation

bell_state Bell State Logical Operation
cat_state Cat State Logical Operation
deutsch Deutsch algorithm with 2 qubits for f(x) = x Hidden Subgroup
dnn Quantum Deep Neural Network Quantum Machine Learning
fredkin_n3 Fredkin gate benchmark Logical Operation
gec_dist3 Error correction with distance 3 and 5 qubits Error Correction
grover Grover’s algorithm Search and Optimization
hs4 Hidden subgroup problem Hidden Subgroup
inverseqft Performs an exact inversion of quantum Fourier tranform Hidden Subgroup
iSWAP An entangling swapping gate Logical Operation
linearsolver Solver for a linear equation of one qubit Linear Equation
1pn Learning parity with noise Machine Learning
pea Phase estimation algorithm Hidden Subgroup
gaoa Quantum approximate optimization algorithm Search and Optimization
gec_sm Repetition code syndrome measurement Error Correction
gec_en Quantum repetition code encoder Error Correction
qft Quantum Fourier transform Hidden Subgroupe
qrng Quantum Random Number Generator Quantum Arithmetic
quantumwalks Quantum walks on graphs with up to 4 nodes Quantum Walk
shor Shor’s algorithm Hidden Subgroup
toffoli Toffoli gate Logical Operation
teleportation | Quantum Teleportation Quantum Communication
jellium Variational ansatz for a Jellium Hamiltonian with a linear-swap network Quantum Simulation
vge_uccsd Variational Quantum Eigensolver with UCCSD ansatz Search and Optimization
wstate W-state preparation and assessment Logical Operation

Li, Ang, et. al, QASMBench: A Low-level QASM Benchmark Suite for
NISQ Evaluation and Simulation, https://arxiv.org/abs/2005.13018

AAicron

12

KU Leuven: Prototyping Neuromorphic Compute

BOOTROM Shared memory (L2) 512 KB

l
’ .
.

TCDM BUS

[Digital core

Activation memory
(L1) 256KB

Instruction

Instruction

Digital PE array
16x16

Max pooling

Multi-core ML Platforms and Custom Compilation Infrastructure -- https://micas.esat.kuleuven.be/research/domains/hardware-efficient-ai-and-mI2
AMicron

https://micas.esat.kuleuven.be/research/domains/hardware-efficient-ai-and-ml

Inspiration: Exascale Reading List

ExaScale Computing Study:
Technology Challenges in
Achieving Exascale Systems

Peter Kogge, Editor & Study Lead
Keren Bergman
Shekhar Borkar
Dan Campbell
William Carlson
William Dally
Monty Denneau
Paul Franzon
William Harrod
Kerry Hill

Jon Hiller
Sherman Karp
Stephen Keckler
Dean Klein
Robert Lucas
Mark Richards
Al Scarpelli
Steven Scott
Allan Snavely
Thomas Sterling
R. Stanley Williams
Katherine Yelick

September 28, 2008

12T

INFORMATION PROCESSING TECHMIQUES OFFICE

Kothe (ORNL)

Exascale Computing Project
2.0

13

Project Management Application Development Software Technology Hardware and Integration
21 2.2 23 2.4
Boudwin (ORNL) Siegel (ANL) Heroux (SNL) Antypas (LBL)
Project Planning and Chemistry and Materials Programming Models and
Management Applications Runtimes Paﬂ;Fgr;uard
211 2.2.1 2.3.1 o
Collins (ORNL) Deslippe (LBL) Thakur (ANL) de Supinsk (LLNL)
Projec;"(;g:gglms;ﬂd Risk Energy é\gpzlications Deve\ogrge;t Tools Hardwar;fgaluation
Blaifigém) Evans (ORNL) Vetler (ORNL) Pakin (LANL)
; Earth and Space Science . Tt Application Integration
Buswnesszwza‘gagement Appz‘i C;g ons Mathemag?;lemnes at Facilities

Milburn (ORNL)

Martin (LBNL)

Li (LBNL)

243
Hill (ORNL)

Prncursmsgt‘ll\,lanagsment Data A"alfgﬁiggﬁogg imization Data andz\‘gs:a"zation Suﬂw:lr'era?cﬁﬁil:gment
A 2.4 ! 244
Keck (ORNL) Has %sm) Ahrens (LANL) Adamson (ORNL)
Information Technology National Security Applications Software Ecosyster and Delivery Facility Resource Utilization
215 225 235 245
Wilson (ORNL) Francois (LANL) Munson (ANL) Siddabathuni Som (ANL)
Communications and Outreach Co-Design NNSA ST Training and Productivity
216 226 236 246
Bernhardt (ORNL) Germann (LANL) Mohror (LLNL) Barker (ORNL)

ECP Software Technology Capability Assessment Report
https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf

AAicron

https://people.eecs.berkeley.edu/~vyelick/papers/Exascale final report.pdf

https://www.exascaleproject.org/wp-content/uploads/2021/01/ECP-ST-CAR-v2.5.pdf
https://people.eecs.berkeley.edu/~yelick/papers/Exascale_final_report.pdf

Driving Use Cases across Multiple Domains

Al/ML

Cloud
(“Datacenter Tax”)

HPC

Enterprise

* Frameworks

ML Compilers

» Integrating new Al/ML
accelerators

» Data prep techniques

* Open Source
* ”"Cloud” versions of enterprise

apps
REST API services

[Pick some target kernels]

» Enterprise-class Database
* In-Memory Databases

» Back-Office Applications

* Supply Chain

« CRM

« MLCommons benchmarks

* NeuroBench

+ DataPerf

* Domain-specific

* Training/Inference perf tests Models for Science?

* Fleet Bench (Google)
» Others should be coming out soon

[based on kernels picked]

« TPC Benchmarks (C, E, H, DS)
« SpecJBB

* SpecVIRT/Vm

« VMmark Virtualization

What domains are we missing?

14

Aicron

Optimize Software/Model Development

Software Improving Power Use

Enabling New or Old Architectures

Better performance tools: reduce time to
optimization

Tools to optimize for power or identify high-
lower code

Al-assisted software development wizards
Curate better datasets to train more efficiently
Optimize model development

Al-assisted algorithmic exploration

Neuromorphic

Differential Analyzer

Reservoir Computing

Ising Rings in CMOS

Silicon Photonics Analog (Al Inference)
Content Addressable Processors

Logic circuits in yeast

Architectures yet to be proposed

Education for Software Optimization

Managing Infrastructure Power

Software Performance Engineering (e.g., MIT
6.016)

Classes or contests to design applications
(and systems) to minimize power use

Infrastructure software for managing
resources for power-efficiency
Runtime management of jobs

15

A4cron

16

Summary

« Software optimization and algorithm happens continually and has been happening for a long time

« Specifying the interaction between software and novel hardware architectures is vitally important to
enable new devices/new materials to find use cases with material benefits and understand impact
on overall system design

« Any hardware solution has a tension between specificity and generality

« Software and Algorithms will help to enable new hardware, but need help to speed up on existing
hardware

Aicron

17

Why does Python Because it's
live on land? above C-level.

WWWTHETASTELESST REXCOM

https://twitter.com/BeingHorizontal/status/1152797848850710531 ﬂ icron

18

References

Pereira, Rui, et al., Ranking Programming Languages by Energy Efficiency, Science of Computer Programming, volume 205. Elsevier, 2021.

Benchmarking and Workload Characterization, https://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/ (broken link)

Lee, Victor, et al., Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU, ISCA ‘10: Proceedings of the 37t annual International Symposium on Computer
Architecture, June 2010, https://doi.org/10.1145/1815961.1816021

Anonymous, Mojo — a new programming lanuage for all Al developers, https://www.modular.com/mojo.

Cinder Github page, https://github.com/facebookincubator/cinder.

Codon Github page, https://github.com/exaloop/codon.

Bentley, Jon, Programming Pearls: Perspective on Performance, Communications of the ACM, November 1984, Volume 21 Number 1, https://dl.acm.org/doi/pdf/10.1145/1968.381154.

Bentley, Jon, Programming Pearls: The Envelope is Back, Communications of the ACM, March, 1986, Volume 29 Number 3. https://dl.acm.org/doi/pdf/10.1145/5666.315593.

Jon Bentley, MIT, 6.172 (now 6.106) Tuning a Traveling Salesman Problem Algorithm, https://www.youtube.com/watch?v=SS5KfIFzfEE.

Cross, Andrew, et al., OpenQASM 3: A Broader and Deeper Quantum Assembly Language, ACM Transactions on Quantum Computing, Volume 3 Issue 3, September 2022.

Li, Ang, et. al, QASMBench: A Low-level QASM Benchmark Suite for NISQ Evaluation and Simulation, https://arxiv.org/abs/2005.13018.

McSherry, Frank, et al., Scalability! But at what COST?, 15t Workshop on Hot Topics in Operating Systems, 2015, https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf.

Dean, Jeffrey, Barroso Luiz André, The Tail at Scale, Communications of the ACM, Volume 56, No. 2, February, 2013, https://dl.acm.org/doi/pdf/10.1145/2408776.2408794.

Kanev, S, et al., Profiling a warehouse-scale computer, 2014, ISCA '15 Proceedings of the 42nd Annual International Symposium on Computer Architecture, https://research.google/pubs/pub44271/.

Lucas, Ising formulations of many NP problems, Frontiers in Physics, vol. 2, 2014. [Online]. Available: https://doi.org/10.3389%2Ffphy.2014.00005.

Foster, Caxton C (1976), Content Addressable Parallel Processors, Van Nostrand Reinhold, ISBN 0-442-22433-8.

Gander, M., Vrana, J., Voje, W. et al. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 8, 15459 (2017). https://doi.org/10.1038/ncomms15459.

AAicron

https://www.nersc.gov/research-and-development/benchmarking-and-workload-characterization/
https://doi.org/10.1145/1815961.1816021
https://www.modular.com/mojo
https://github.com/facebookincubator/cinder
https://github.com/exaloop/codon
https://dl.acm.org/doi/pdf/10.1145/1968.381154
https://dl.acm.org/doi/pdf/10.1145/5666.315593
https://www.youtube.com/watch?v=SS5KfIFzfEE
https://arxiv.org/abs/2005.13018
https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf
https://dl.acm.org/doi/pdf/10.1145/2408776.2408794
https://research.google/pubs/pub44271/
https://doi.org/10.3389%2Ffphy.2014.00005
https://archive.org/details/contentaddressab0000fost
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-442-22433-8
https://doi.org/10.1038/ncomms15459

	Slide 1: EES2: Software and Algorithms
	Slide 2: Outline
	Slide 3
	Slide 4
	Slide 5: Software Performance Example
	Slide 6: Software Performance Example
	Slide 7: Implications of Inefficient Software
	Slide 8: Interaction of Software and CPU Architecture
	Slide 9: Parts of a CPU to execute foo()
	Slide 10: Architecture for SFQ-based Computing
	Slide 11: Software Enablement Example: Quantum (IBM)
	Slide 12: KU Leuven: Prototyping Neuromorphic Compute
	Slide 13: Inspiration: Exascale Reading List
	Slide 14: Driving Use Cases across Multiple Domains
	Slide 15: Software Improving Power Use
	Slide 16: Summary
	Slide 17
	Slide 18: References
	Slide 19

