Classical Digital Switch, Quantum information processing, and a Single Synapse

Part 1: Energy Estimates

Sadasivan (Sadas) Shankar SLAC National Laboratory, Materials Science and Engineering, Stanford University

Energy Efficiency Scaling (EES2): Roadmap Meeting #8 DOE/EERE Advanced Manufacturing, Materials, and Technologies Office (AMMTO)

> Argonne National Laboratory, Argonne, Illinois July 19, 2023

Information Processing: Similarities and Differences

Three Different Dimensions for Computing (Sep 14, 2022, EES2 Presentation)

- <u>Microelectronics Systems</u>: The current trajectories, using scaling and specialized architectures are on the Microelectronics Basis
- <u>Nature-inspired</u> represents all the information processing in nature from neuron synapses to photosynthesis
- <u>Quantum Information-based</u> is based on using quantum representations as units of computation and finding algorithms that can simulate quantum and classical processes

Questions to be Addressed

- Top-down estimates have shown > 24 orders of magnitude in energy as a bit is translated to an *instruction* for *simulation of an Application*
- What are can be learned from biological and quantum systems?
 How can we use this to help design energy efficient computing?
- Two parts:
 - Part 1: Estimate Energy for elemental information processing on the other different dimensions
 - Part 2: Quantify and Identify Pathways for using the lessons from Nature and Quantum Information Processing

Outline

Recap Biochemistry and Thermodynamical aspects

Biological System: Single Synapse Processing

Quantum Information Processing: Quantum Chemistry

- Simulation in a Classical Digital Computer
- Emulation in a Quantum System

Summary and Future Work

Biochemical System: ATP Hydrolysis

Change in Free Energy = \sim 31.55 ± 1.27 kJ·mol- 1

F. Meurer, et al, 2017

Computer as a Thermodynamic System

(a). Heat Engine

(b). Information Processing Engine

Computing: Digital vs Quantum

Classical Digital Representation

 $\begin{array}{c|c} 1 \\ 0 \\ P = 0 \text{ or } 1 \end{array}$

Discrete, Measurable States, Control

- A scalable physical system with well characterized bits
- The ability to initialize and transport bits to one of the two specific fiducial state s
- Clock synchronization across the system

Computing: Digital vs Quantum

Classical Digital Representation

 $\mathbf{P} = \mathbf{0} \text{ or } \mathbf{1}$

Discrete, Measurable States, Control

- A scalable physical system with well characterized bits
- The ability to initialize and transport bits to one of the two specific fiducial state s
- Clock synchronization across the system

Quantum Real Space Representation

- Superposition, Entanglement, Control
 - A scalable physical system with well characterized qubits
 - The ability to initialize and transport qubits to specific fiducial state
 - Long relevant decoherence times "much" longer than gate & system operation time

Computing: Digital vs Brain

- Mostly 2 dimensional
- Regular Geometry
- Software upgrades
- Assembly: Top-down lithography
- Number of Switching elements: ~10 Billion

- Intrinsically 3 dimensional
- Irregular Geometry
- **Plastic**: Both "hardware" and "software"
- Assembly: Bottoms-up
- Number of switching elements:
 ~80 Billion neurons or 400 Trillion synapses

Circuits are efficiently embedded, in a higher dimensional topological dimension (4.54 vs 3.81) (Bassett, 2010)

Single Synapse Processing: Where a "bit" is more than a bit

 Large sub-threshold voltage fluctuations

J. J. Moore et al. (2017)

- Large sub-threshold voltage fluctuations
- In dendrites, indicate a hybrid analog-digital code

Ganong's Rev. of Medical Physiology, 25e

- Large sub-threshold voltage fluctuations
- In dendrites, indicate a hybrid analog-digital code in the dendrite
- Multi-state Processing

 ~90 genes for neuro modulators
 Number of neuromodulations are higher
 - Chemical diffusional transport

Watanabe, 2015

- Large sub-threshold voltage fluctuations
- In dendrites, indicate a hybrid analog-digital code in the dendrite
- Multi-state Processing

 ~90 genes for neuro modulators
 Chemical diffusional transport
- Recycling molecules

Single Synapse Processing: Quantifying Energy

Energy of a synapse (1)

Biological Entity	Gross Power (W)	Net Power, assuming 70% utilitarian (W)	0.5 millisecond	Frequency of State Switching (Hz)	Energy/Swi tching (Joules/swit ching)	Energy/Swi tching (eV/switchi ng)	Number of Transistors or Switches	Energy/State Switching/Neuron (Joules/switching)
Human Brain (Synpases)	20	14	6.00E-04	1.67E+03	8.40E-03	5.25E+16	8.00E+14	1.05E-17

 Synapse Switching is using 8.75-10.5 atto joules (top-down)

Energy of a synapse (2)

 Synapse Switching is using ~0.77 atto joules (bottom-up)

Weight of the brain (gram)	1400
Synpases/gm	7.14E+10
Molecules of glucose metabolized/synapse/sec	8.84E+02
Molecules of glucose metabolized/synapse/millisec	8.84E-01
ATP produced by glycolysis oxidation/synapse/millisec	28
Total ATP/synapse/millisec	29.8
Synaptic transmission from presynaptic action potential arrival to postsynaptic evoked current 0.6 ms	0.6
Total ATP/synapse (ATP)	17.88
Total J/synapse (Joules/synapse)	7.72E-19
Ratio of Synapse to Thermodynamic Limit	96.25

Quantum Information Processing

Simulating Chemistry on a Classical Digital Computer

Energy Estimate for a Chemical Reaction

Loh et al, 2020

- Fastest chemical reaction (experimental):
 - 46 ± 10 fs, tentatively assigned to the decay of the H2O+ radical cation via proton transfer
- Energy for Proton Transfer 1.33 x 10 ⁻²⁰ Joules

Energy in *Joules*

Temperature in Kelvin

• Limits of system in equilibrium with surroundings

S.Shankar

Energy in *Joules*

Temperature in Kelvin

 Biological energy in living systems (complex and thermodynamic non-equilibrium)

Energy in *Joules*

Temperature in Kelvin

Energy at the quantum level for the fastest measured
 S.Shankar

Energy in Joules

Temperature in Kelvin

 Increasing energy as information processing is reaching into digital domain S.Shankar

Energy in Joules

Temperature in Kelvin

 Increasing energy as information processing is reaching into digital domain at instructional level

Quantum Information Processing

Quantum Chemistry Emulation on a Quantum Computer

Quantum Chemistry: Setup

- An artificial atom from Cs atoms on InSb(110) and bonding/antibonding orbitals of coupled artificial atoms
- 42 layers of InSb and Clusters of Cs Atoms
- Clusters of Cesium Atoms put together to mimic synthetic atoms and molecules
- Constant Current Scanning Tunneling Microscopy
 - 200 mV and 20 pA

Quantum Chemistry: Setup

E. Sierda et al, 2023

• Benzene: Six Cesium Atoms-cluster per benzene CH molecule leading to total 36 Cesium atoms

 Butadiene: Eight Cesium Atoms-cluster per C-H molecule leading to total 32 Cesium atoms

Quantum Chemistry: *Emulation*

- System variables
 - 93.5 nm^2 X 27.2 nm
 - 100 electrons per InSb atom
 - ~9400 Atoms

Potental for Stabilizing STM Tip (V)	2.00E-01		
Current (Amp)	2.00E-11		
Max Time (Second)	100		
Min Time (Second)	8.30E-03		
Max Energy (Joules)	4.00E-10		
Minimum Energy (Joules)	3.32E-14		

• Energy to emulate Benzene and Butadiene varies from 3.3 x 10⁻¹⁴ to 4 x 10⁻¹⁰ Joules

Quantum Chemistry: Simulation

• Energy to simulate Benzene and Butadiene ~3.7 x 10⁴ to Joules

Ack: C. Musgrave, W.A. Goddard@Caltech

	Time to Compute (Seconds)	Power (Watts)	Energy (Joules)
Benzene	294	125	3.68E+04
Butadiene	295	125	3.69E+04

Summary

- Translation from Bit to Instruction to Simulation leads to energy efficiency loss
 - BIT Utilization gives a clue
 - Intrinsic thermodynamics associated with energy transduction in computing
- Chemical Reactions and Biological Entities are energy efficient
 - BIT is more than a bit
- Quantum Emulation of a quantum system is less energy intensive than Digital Simulation of the same system
- Ongoing
 - Part 2: Developing methodology for quantifying complexity in different computing systems
 - Energy Estimates for different Neural Networks & Neuromorphic Architectures

Acknowledgements and References

Thanks!

- Partially funded by the U.S. Department of Energy's Office of Science contract DE-AC02-76SF00515 with SLAC
- R. Zare (Stanford), C. Musgrave Jr., W. Goddard (Caltech)
- A. Reuther (MIT-LL)

Papers in Progress

- 1. Shankar, S. 2021 "Lessons from Nature for Computing: Looking beyond Moore's Law with Special Purpose Computing and Co-design", 2021 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-8).
- 2. Shankar, S, Reuther, A, 2022, "Trends in Energy Estimates for Computing in Al/Machine Learning Accelerators, Supercomputers, and Compute-Intensive Applications", 2022 IEEE High Performance Extreme Computing Conference (HPEC)
- 3. Shankar, S., *Energy Estimates Across Layers of Computing: From Devices to Large-Scale Applications in Al/Machine Learning in Natural Language Processing, Scientific Computing, and Crypto coin Mining* (in preparation)
- 4. A Logical Framework for Information Processing (in preparation)
- 5. Energy-based Scaling for Computing (in preparation)