

DoD Microelectronics Commons

A National Network for Defense Microelectronics Innovation

Energy Efficiency Scaling over 2 decades, (EES2) Workshop February 16, 2023

Dr. Dev Shenoy, PD Microelectronics, Director Defense Microelectronics Cross Functional Team OUSD (R&E) Microelectronics Modernization

HTTPS://WWW.CTO.MIL 😏 @DODCTO 👔

@OUSDRE

DISTRIBUTION STATEMENT A. Approved for Public Release

If there is any inconsistency between the material presented here and the Request for Solutions (RFS), the RFS shall take precedence.

The Microelectronics Commons RFS will be posted on <u>www.sam.gov</u> and <u>https://nstxl.org/opportunity/microelectronics-me-commons/</u>

CRITICAL TECHNOLOGY SYNERGIES: MICROELECTRONICS

T&AM Program Enabling Access to State of the Art (SOTA)

Access to State of the Art (SOTA) Roadmap: Microelectronics

Fiscal Years -> 20	2 2023		2024	2025	2026	2027	2028	2029	2030	2031	2032+	
Foundry Access		Access to SOTA US commercial foundries for DoD specific designs (Intel & Global Foundries)										
	F	Fund 2-3 runs per year in commercial ≤ 22nm node technology for DoD specific designs					► Establish 2 runs per year in commercial ≤5nm node technology for DoD Specific Designs					
RAMP		Rapid Assured Microelectronics Prototypes (Microsoft Team, Qualcomm)										
	Demonst prototype	ration of secure of s	design capa SOTA techr	ability via 3 nology	3	Cloud bas design an	sed commero d manufactu	cially scalable rring flow cap	e, quantifiat ability fully	oly assured, utilized by Di	В	
		RAMP-Commercial (Qualcomm, Intel)										
Institution of Technology Ludges/L Institution of Technology Ludges/L Image: A state of the state of	Intel 18A test cl designs comple	hip Intel 1 eted	8A PDK		High Volun foundry caj DoD ICs	ne (25k/wpm pability for Q,	s) leading eo A dual-use C	lge (<5nm) COTS & custo	om			
Emulation and EDA		Emulation Pathfinder for QA Design Flow (AFRL)										
	JSF F35 based Q,	& PEO SUB prot A design flows	totype dem	onstrations	of emulation	n Qual desig	lified emulati gn flow capa	on based QA bility				
SAHARA			Structured	Array Har	dware for Au	utomatically	Realized Ap	plications (Ir	itel)			
	Prototype Structured Array chip demonstrated (50M gates)						d SAHARA d Ictured ASIC	capability to e , at an onsho	efficiently co pre SOTA fo	onvert existing oundry with se	ן FPGA ecurity	
Design Acceleration and Transition		New Starts in FY23 – Design Acceleration and Transition Efforts Contract awards(s) for new T&AM activities										
LEGEND				Aature	a tha D		COTA	<u>Futu</u>	e SOTA <u>Mic</u>	croelectronics	Needs	
Enhanced Capabilities		Nicroelectronics Ecosystem Ecosystem alignment to DIB and							nature SOTA m ging t to DIB and PC	aterials,)R		
DISTRIBUTION STATEMENT A. Approved for Public Release												

NorthPole Neural Inference Processor

Disruptive Innovation

- 1st gen IBM TrueNorth was the most energyefficient processor for deep inference
 - 50 \times more energy-efficient than lowest-power GPU
- 2nd gen IBM NorthPole leaps beyond TrueNorth
 - 3,000imes more computation
 - 640 \times larger neural networks (CNN, MLP, RNN)
 - Only 4 \times more transistors (22 billion)

Broad Application Potential

- Configurable clock rate and supply voltage
 25MHz~400MHz, 0.67V~0.82V
- Adaptive chip run power for broad use cases
 5W~60W chip power
- Breakthrough peak energy efficiency and low latency
 ResNet50, Yolov4 benchmarks

DoD Mission Needs

- Huge data volume and velocity
 - 95% of data/intelligence lost without real-time on-board analytics
- Approaches for Processing
 - NorthPole (GF 12nm): 4 chips, 200W at 2/4/8-bit mixed precision
 GPU (V100 TSMC 12nm): 20 chips, 5,000W

DoD/DoE Common Interest

• Exascale AI Inference in low-power, low-volume form factor with applications to intelligence, mobile data centers, and supercomputing.

Extend, secure, and protect US advantages in AI, Autonomy, etc.

- NorthPole surpasses other Al inference chips on energy efficiency, space efficiency, and latency
- Export controlled HW&SW subject to EAR
- Government-Purpose Rights IPs for future development
- US based design & manufacturing Global Foundries 12nm

Transition Pathways

- PCle Form Factor Board
- Software Development Kit with Easy Migration
- Transition Workshop (1st Workshop planned for March 16, 2023, still possible to register and attend)

VorthPole

Access to Advanced Packaging Roadmap: Microelectronics

Heterogeneous Integration (HI) and SWAP Benefits

Why HI?

- Modular approach vs. Monolithic approach
- Not every logic function (IP) needs to be designed in the same process node (HI)
- Leveraging IP in the form of chiplets
- Current industry trend has led to chiplets on silicon interposers
- Includes latest IC packaging 2.5D, 3D, FOWLP technologies
- Optimize nodes required for ideal performance and cost

Notional HI MCP

SHIP is leveraging commercial HI solutions to improve SWAP savings and system performance

Expected SWAP Savings: 8x relative to current solution

Through HI enabled SWAP savings, MCP-1 will deliver:

- Unprecedented spectral agility
- ✓ Enhanced signal processing
- ✓ Lower power consumption
- Improved thermal management

SHIP-D functional parts have been delivered to lead DIB partner to prove SWAP benefits

MCP-1 consisting of two chiplets integrated with an FPGA

MCP-1 finished package

DISTRIBUTION STATEMENT A. Approved for Public Release

Lab-to-Fab Transition of Microelectronics Technologies

THE OFFICE OF THE DEPUTY TECHNOLOGY OFFICER FOR CRITICAL TECHNOLOGIES

Research Universities, **Start-ups** have facilities for <u>Lab</u> <u>prototyping</u> but face barriers to demonstrating manufacturability in a Fab. **Core Facilities or Foundries/Fabs** provide access to early stage <u>Fab prototyping.</u>

Microelectronics Commons aims to enable lab-to-fab prototyping– evolve microelectronics laboratory prototyping to foundry/fab prototyping – in domestic facilities.

The Microelectronics Commons: Innovation from Lab-to-Fab

Innovation Barriers

Lack of access to existing fabs for lab-to-fab prototyping

High capital costs for process and metrology tooling to support manufacturing of microelectronics technologies

High Intellectual Property (IP) and Electronic Design Automation (EDA) design license costs

Lack of domestic access to chip carriers, and packaging materials to support integration of electronics

Lack of workforce talent and expertise to support technology transition

End State

Sustained partnerships between emerging technology sources, manufacturing facilities, and interagency partners

Rapid transition of early-stage microelectronics research to proven technology in domestic foundries

Expand **domestic** microelectronics fabrication capability

Enhance microelectronics **education** to bolster the microelectronics engineering workforce

Develop a **pipeline of talent** to bolster local semiconductor economies and grow the domestic semiconductor workforce

Democratize access to capabilities needed for lab-to-fab prototyping

Microelectronics Commons Addresses the Valley of Death

THE OFFICE OF THE DEPUTY TECHNOLOGY OFFICER FOR CRITICAL TECHNOLOGIES

Foundry/Fab

Laboratory

ense Program and nmercial Adoption

11

Accelerating Artificial Intelligence Hardware at the Edge

- Desired End State
 - A fab prototype for eventual deployment in AI-enabled systems for edge applications
 - Enables overmatch performance in operational situation awareness and decision making in a wide variety of DoD missions
 - Hubs and Cores need to facilitate the lab-to-fab prototyping and testing of these AI hardware platforms
- Technical Gaps
 - Need AI Computing systems that can do both training and inference at the edge
 - Throughput and energy efficiency of existing AI edge computing systems is hampered by the vast amount of multi-domain sensor and operational data; places constraints on size-weight-and-power (SWaP)
 - Al computing architectures and algorithms for real-time warfighter decision support in complex environments.
 - Realizing the potential of emerging neuromorphic computing chips and AI accelerators to address critical applications and high performance at scale

Progression from Concept to Product

Lab-to-fab prototyping bridges valley of death from laboratory research to foundry/fab prototyping

Hubs and Cores

A network of regional entities with lab prototyping capabilities and sources of microelectronics talent for onshore, lab-tofab transition of semiconductor technologies while ensuring workforce training. Hubs:

- Have the flexibility to bring in members from any region to be successful in their lab-to-fab efforts.
- Connect researchers and designers to prototyping capabilities targeted to strengths in the Hub's technical topic areas.
- Will be centers of expertise for one or more of the six critical technology areas.

Microelectronics Commons

<u>Goal</u>

To connect regional organizations through the Hub to accelerate lab-to-fab prototyping based on proximity and to strengthen local economies through a workforce that supports those regions.

Cores

Fabs/foundries that have scalable capacity beyond what the regional hubs can provide.

Cores serve to:

- Further complement and amplify the work of the regional hubs; for example, ≥200 mm wafer fab for Silicon CMOScompatible technologies and ≥100 mm wafer fab for compound semiconductors.
- Engage with commercial fabs and align them better to commercial processes to facilitate transition to commercial and defense companies.
- Provide access to repeatable processes, back-end manufacturing/integration and full flow-fabrication.

Commons Will Support Infrastructure

THE OFFICE OF THE DEPUTY TECHNOLOGY OFFICER FOR CRITICAL TECHNOLOGIES

Infrastructure is foundational to the success of the Microelectronics Commons

Role of Projects

THE OFFICE OF THE DEPUTY TECHNOLOGY OFFICER FOR CRITICAL TECHNOLOGIES

Projects enhance the value of infrastructure through staffing and utilization of lab and fab facilities

Hub Models

THE OFFICE OF THE DEPUTY TECHNOLOGY OFFICER FOR CRITICAL TECHNOLOGIES

participation from all interested stakeholders and sustains the hub in the long term

How to Submit your Questions

THE OFFICE OF THE DEPUTY TECHNOLOGY OFFICER FOR CRITICAL TECHNOLOGIES

The Naval Surface Warfare Center – Crane (NSWC Crane) Strategic & Spectrum Missions Advanced Resilient Trusted Systems (<u>S²MARTS</u>) Other Transaction Authority (OTA) will be the primary contract vehicle for the Microelectronics Commons

The Microelectronics Commons Consortium Manager, the National Security Technology Accelerator (<u>NSTXL</u>), will make program announcements (Events, Documentation changes, etc.) on the S²MARTS site and on <u>www.sam.gov</u>

Important Links

- Microelectronics DoD Research & Engineering, OUSD(R&E) (cto.mil): <u>https://www.cto.mil/ct/microelectronics/</u>
- Microelectronics Commons NSTXL: <u>https://nstxl.org/opportunity/microelectronics-me-commons/</u>
 - To submit any questions, locate "Submit a Question" on that site, complete the fields, and click "Submit".