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“… (system) profiling revealed that 25-35% of all CPU time was spent just moving bytes around… If 
data movement were faster, more work could be done on the same processors.

Some things to consider …

- Richard L. Sites; Computer Architecture Today Blog, ACM SIGARCH, December 19, 2022

The industry will continue to innovate on the current computing paradigm.  This should be a key focus 

while looking for the next ‘BIG’ thing.

• System improvements  can yield nearly two orders of magnitude efficiency improvement  

• 40 years of SW will not be changed overnight.   Need to execute existing code

• Amdahl’s Law reigns – sequential performance is STILL important

• It takes “Two Olympic Cycles” for SW to ‘catch-up’ with HW.

• Any changes to the computing model need investments in Workforce Development.

• General Purpose Computing as we know it today will still be the dominate architecture 20 

years from now.

Solving the energy efficiency problem means that one must address data movement 



In general, DRAM is a hard technology to beat in terms of performance 
and activation energy.
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Comparison of various emerging memory technologies

DRAM STTRAM PCM/ 1T1R
Cross Point 

RRAM
NAND

Read Latency
20ns ~50ns ~100ns-200ns ~100ns-200ns ~10us

Write Latency
20ns ~50ns ~1us ~1us ~10us

Read Endurance
>1e15 >1011 >107 >107 >107

Write Endurance
>1e15 >1011 >106 >106 2K-100K

Write/Read

Energy/Bit <10pJ/bit ~25pJ/bit ~100-200 pJ/bit ~100-200 pJ/bit >100pJ/bit

Alterability
~2KB <2KB ~10’s B ~10’s B Large Blocks

Retention@RT
~milli seconds Months ~Years ~Years Years

Areal Density
1X ~30x
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Moore’s Law and Dennard’s Scaling Law reductions are the 

reason we’re here today

Source: Anand tech.com
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Moving Data Dominates Energy costs
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Times Improvement (45 -> 7nm)

Energy numbers from Jouppi, et. al. “Ten Lessons From Three Generations Shaped Google’s TPUv4i” and Keckler et al. “GPUs and the Future of Parallel Computing”
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Energy / Operation (pJ)

Data Movement energy costs are 2 – 3 
orders of magnitude higher than 

compute.

Energy cost of logic has been well 
optimized over the years.



November 2022: The TOP 10 Systems 

Rank     Site Computer Country Cores
Rmax

[Pflops]

% of 

Peak

Power

[MW]

GFlops/

Watt

1
DOE / OS  

Oak Ridge Nat Lab

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C,          2 

GHz, AMD Instinct MI250X, Slingshot 10
USA 7,733,248 1,102 65 21.1 52.2

2
RIKEN Center for 

Computational Science

Fugaku, ARM A64FX (48C, 2.2 GHz),                           

Tofu D Interconnect
Japan 7,299,072 442. 82 29.9 14.8

3 EuroHPC /CSC
LUMI, HPE Cray EX235a, AMD 3rd EPYC 64C,             2 

GHz, AMD Instinct MI250X, Slingshot 10
Finland 1,268,736 304. 72 2.94 52.3

4 EuroHPC/CINECA

BullSequana XH2000, Xeon Platinum 8358 32C 

2.6GHz, NVIDIA A100 (108C), Quad-rail NVIDIA 

HDR100

Italy 1,463,616 175. 68 5.6 31.1

5
DOE / OS

Oak Ridge Nat Lab

Summit, IBM Power 9 (22C, 3.0 GHz),                  

NVIDIA GV100 (80C), Mellonox EDR
USA 2,397,824 149. 74 10.1 14.7

6
DOE / NNSA

L Livermore Nat Lab

Sierra, IBM Power 9 (22C, 3.1 GHz), NVIDIA 

GV100 (80C), Mellonox EDR
USA 1,572,480 94.6 75 7.44 12.7

7
National Super Computer 

Center in Wuxi

Sunway TaihuLight, SW26010 (260C), Custom 

Interconnect
China 10,649,000 93.0 74 15.4 6.05

8
DOE / OS 

NERSC - LBNL

Perlmutter HPE Cray EX235n,
AMD EPYC 64C 2.45GHz, NVIDIA A100, Slingshot 

10 
USA 706,304 64.6 71 2.59 27.4

9 NVIDIA Corporation
Selene NVIDIA DGX A100, AMD EPYC 7742 (64C, 

2.25GHz), NVIDIA A100 (108C), Mellanox HDR
USA 555,520 63.4 80 2.64 23.9

10
National Super Computer 

Center in Guangzhou

Tianhe-2A NUDT,  Xeon (12C) , MATRIX-2000 (128C) + 

Custom Interconnect
China 4,981,760 61.4 61 18.5 3.32

Source: Jack Dongara, “A Not So Simple Matter of Software”,

SC’22 Keynote, 2021 ACM A.M Turing Lecture 



Performance/BW mismatch in Numerical Computations.

▪ Data movement has a big 
impact

▪ Performance comes from 
balancing floating point 
execution (Flops/sec) with 
memory->CPU transfer rate 
(Words/sec)

− “Best” balance would be 1 
flop per word-transfered

▪ Today’s systems are close 
to 100 flops/sec per word-
transferred

− Imbalanced: Over 
provisioned for Flops

Figure from Mark Gates UTK

Graph from Mark Gates

Plot for 64-bit floating point data movement & operations
(Bandwidth from CPU or GPU memory to registers)

Machine Balance
Ratio of Fl Pt Ops per Data Movement over Time

Source: Jack Dongara, “A Not So Simple Matter of Software”,

SC’22 Keynote, 2021 ACM A.M Turing Lecture 



Performance and Benchmarking Evaluation Tools

▪ Linpack Benchmark - Longstanding benchmark started in 1979
− Lots of positive features; easy to understand and run; shows trends

▪ However, much has changed since 1979
− Arithmetic was expensive then and today it is over-provisioned and 

inexpensive

▪ Linpack performance of computer systems is no longer strongly 
correlated to real application performance
− Linpack benchmark based on dense matrix multiplication

▪ Designing a system for good Linpack performance can lead to 
design choices that are wrong for today’s applications

Source: Jack Dongara, “A Not So Simple Matter of Software”,

SC’22 Keynote, 2021 ACM A.M Turing Lecture 



HPCG Results; The Other Benchmark

▪ High Performance Conjugate Gradients (HPCG)

▪ Solves Ax=b, A large, sparse, b known, x computed

▪ An optimized implementation of PCG contains essential 
computational and communication patterns that are prevalent in a 
variety of methods for discretization and numerical solution of PDEs 

▪ Patterns:
− Dense and sparse computations

− Dense and sparse collectives

− Multi-scale execution of kernels via MG (truncated) V cycle.

− Data-driven parallelism (unstructured sparse triangular solves)

▪ Strong verification (via spectral properties of PCG)

hpcg-benchmark.org With Piotr Luszczek and Mike Heroux

Slide Source: Jack Dongara, “A Not So Simple Matter of Software”,  SC’22 Keynote, 2021 ACM A.M Turing Lecture 



HPCG Top 10, November 2022

Rank Site Computer Cores

HPL 

Rmax

(Pflop/s)

TOP500 

Rank

HPCG 

(Pflop/s)

Fraction of 

Peak

1
RIKEN Center for 

Computational Science

Japan

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fujitsu 7,630,848 442 2 16.0 3.0%

2
DOE/SC/ORNL

USA
Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C, 2 GHz, 

AMD Instinct MI250X, Slingshot 10 8,730,112 1,102 1 14.1 0.8%

3
EuroHPC/CSC

Finland
LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, 

AMD MI250X, Slingshot-11
2,174,976 304 3 3.41 0.8%

4
DOE/SC/ORNL

USA
Summit, AC922, IBM POWER9 22C 3.7GHz, Dual-rail 

Mellanox FDR, NVIDIA Volta V100, IBM
2,414,592 149 5 2.93 1.5%

5
EuroHPC/CINECA

Italy

Leonardo, BullSequana XH2000, Xeon Platinum 8358 

32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 

NVIDIA HDR100 Infiniband
1,463,616 175 4 2.57 1.0%

6
DOE/SC/LBNL

USA
Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 

2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10
761,856 70.9 8 1.91 2.0%

7
DOE/NNSA/LLNL

USA
Sierra, S922LC, IBM POWER9 20C 3.1 GHz, Mellanox 

EDR, NVIDIA Volta V100, IBM
1,572,480 94.6 6 1.80 1.4%

8
NVIDIA

USA
Selene, DGX SuperPOD, AMD EPYC 7742 64C 2.25 

GHz, Mellanox HDR, NVIDIA Ampere A100
555,520 63.5 9 1.62 2.0%

9
Forschungszentrum

Juelich (FZJ)

Germany

JUWELS Booster Module, Bull Sequana XH2000 , AMD 

EPYC 7402 24C 2.8GHz, Mellanox HDR InfiniBand, 

NVIDIA Ampere A100, Atos
449,280 44.1 12 1.28 1.8%

10
Saudi Aramco

Saudi Arabia
Dammam-7, Cray CS-Storm, Xeon Gold 6248 20C 

2.5GHz, InfiniBand HDR 100, NVIDIA Volta V100, HPE
672,520 22.4 20 0.88 1.6%

Slide Source: Jack Dongara, “A Not So Simple Matter of Software”,  

SC’22 Keynote, 2021 ACM A.M Turing Lecture 



For the more real world numerical applications, need 
from 100x-300x Reduction in FLOP/BW over current solutions
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The path memory data takes to its destination…
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12Narrow busses are driven by system/package cost, power and 

standardization.

CPU

DRAM
Low Off 

Memory BW

Ship

32B

Ship

32B

Ship

32B

High On 

Memory BW

Read

2048B

Read

2048B

Read

2048B

Bank 1

Bank 2

Bank 8

Output

2-8B

~25 Gb/s ~4,000 Gb/s



What if…. We revisit the Hybrid Memory Cube (HMC) 
concept with advanced packaging innovations
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▪ 10s of TB/s at significantly reduced energy/bit over state of the art

▪ 3D-stacked memory and logic for optimized bandwidth and energy efficiency

▪ Increased bandwidth at lower power enabled by hybrid bonding

▪ Significantly greater number of connections between logic and memory

▪ Co-optimized logic and memory architectures and designs



Stacking RAM w/logic reverses the FLOP/BW mismatch
(The example assumes GPT-3, batch size of 1, 3.5ms latency)
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With a change in the memory/logic relationship, an 
improvement in energy efficiency can be achieved.

Design Target for 

GPT-3 (example)

HBM

Memory-on-Logic

Optimized Solution

Memory Bandwidth 100TB/s 0.82TB/s >10x HBM

Est. Energy/bit 1.5pJ/b 2.75pJ/b 0.75 - 1.00pJ/b

User Capacity Range @ 100 TB/s ~350GB 3900GB (32GB/stk)

~11x Extra capacity

352GB (32GB/stk)

1X capacity

Memory stacks for 350GB @ 100TB/s (min) 11 @ 32GB 121 11

Memory System Power at >350GB / >50TB/s Target: <= 800W ~2200W 660W - 880W



Co-Locating Memory and computing for highest efficiency.

J. Hasler, B. Marr; “ Finding a Roadmap to achieve large neuromorphic

hardware systems”; Frontiers in Neuroscience, Sept 10, 2013

http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full

http://journal.frontiersin.org/article/10.3389/fnins.2013.00118/full


Approaching the efficiency of biological systems…
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There is roughly a five order of magnitude in Energy efficiency gap that needs to be closed

Source: Hasler,and Marr, “Finding a roadmap to achieve large neuromorphic hardware systems”, Frontiers in Neuroscience, Sept. 2013.

Massively parallel (slow) compute engines 

where computation’s occurring at the data in the 

Analog domain.

We are 'around' here.

This is our challenge



17


	Slide 1: The resurgence of Shared Memory Systems 
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Moving Data Dominates Energy costs
	Slide 6: November 2022: The TOP 10 Systems  
	Slide 7: Performance/BW mismatch in Numerical Computations.
	Slide 8: Performance and Benchmarking Evaluation Tools
	Slide 9: HPCG Results; The Other Benchmark
	Slide 10: HPCG Top 10, November 2022
	Slide 11: For the more real world numerical applications, need  from 100x-300x Reduction in FLOP/BW over current solutions
	Slide 12
	Slide 13: What if…. We revisit the Hybrid Memory Cube (HMC) concept with advanced packaging innovations
	Slide 14: Stacking RAM w/logic reverses the FLOP/BW mismatch (The example assumes GPT-3, batch size of 1, 3.5ms latency)
	Slide 15: Co-Locating Memory and computing for highest efficiency.
	Slide 16: Approaching the efficiency of biological systems…
	Slide 17

