The resurgence of Shared Memory Systems

Steve Pawlowski

Corporate Vice President, Advanced Computing
Solutions

March 2023

©2023 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are
subject to change without notice. All information is provided on an “AS IS” basis without warranties

of any kind. Statements regarding products, including regarding their features, availability, functionality,
or compatibility, are provided for informational purposes only and do not modify the warranty, if any,
applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron
trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their
respective owners.

/7|cron®




Some things to consider ...

Solving the energy efficiency problem means that one must address data movement

“... (system) profiling revealed that 25-35% of all CPU time was spent just moving bytes around... If
data movement were faster, more work could be done on the same processors.

- Richard L. Sites; Computer Architecture Today Blog, ACM SIGARCH, December 19, 2022

The industry will continue to innovate on the current computing paradigm. This should be a key focus
while looking for the next ‘BIG’ thing.

« System improvements can yield nearly two orders of magnitude efficiency improvement
« 40 years of SW will not be changed overnight. Need to execute existing code
 Amdahl’'s Law reigns — sequential performance is STILL important
» |t takes “Two Olympic Cycles” for SW to ‘catch-up’ with HW.
« Any changes to the computing model need investments in Workforce Development.
* General Purpose Computing as we know it today will still be the dominate architecture 20
years from now.



In general, DRAM is a hard technology to beat in terms of performance
and activation energy.

Comparison of various emerging memory technologies
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Moore’s Law and Dennard’s Scaling Law reductions are the
reason we're here today
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Moving Data Dominates Energy costs

Energy numbers from Jouppi, et. al. “Ten Lessons From Three Generations Shaped Google’s TPUv4i” and Keckler et al. “GPUs and the Future of Parallel Computing”
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November 2022: The TOP 10 Systems

Source: Jack Dongara, “A Not So Simple Matter of Software”,
SC’22 Keynote, 2021 ACM A.M Turing Lecture
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Performance/BW mismatch in Numerical Computations.

= Data movement has a big
impact

= Performance comes from
balancing floating point
execution (Flops/sec) with
memory->CPU transfer rate
(Words/sec)

- “Best” balance would be 1
flop per word-transfered

» Today's systems are close
to 100 flops/sec per word-
transferred

— Imbalanced: Over
provisioned for Flops

Source: Jack Dongara, “A Not So Simple Matter of Software”,

SC’22 Keynote, 2021 ACM A.M Turing Lecture
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Performance and Benchmarking Evaluation Tools

» Linpack Benchmark - Longstanding benchmark started in 1979
— Lots of positive features; easy to understand and run; shows trends

= However, much has changed since 1979
— Arithmetic was expensive then and today it is over-provisioned and
Inexpensive

* Linpack performance of computer systems is no longer strongly
correlated to real application performance
— Linpack benchmark based on dense matrix multiplication

= Designing a system for good Linpack performance can lead to
design choices that are wrong for today’s applications

Source: Jack Dongara, “A Not So Simple Matter of Software”,
SC'22 Keynote, 2021 ACM A.M Turing Lecture ATcron



HPCG Results: The Other Benchmark

Hi

gh Performance Conjugate Gradients (HPCG)

Solves Ax=Db, A large, sparse, b known, x computed
An optimized implementation of PCG contains essential

computational and communication patterns that are prevalent in a
variety of methods for discretization and numerical solution of PDEs

Patterns:

Dense and sparse computations

Dense and sparse collectives

Multi-scale execution of kernels via MG (truncated) V cycle.
Data-driven parallelism (unstructured sparse triangular solves)

Strong verification (via spectral properties of PCG)

hpcg-benchmark.org With Piotr Luszczek and Mike Heroux

Slide Source: Jack Dongara, “A Not So Simple Matter of Software”, SC’'22 Keynote, 2021 ACM A.M Turing Lecture




HPCG Top 10, November 2022

Slide Source: Jack Dongara, “A Not So Simple Matter of Software”,
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For the more real world numerical applications, need

from 100x-300x Reduction in FLOP/BW over current solutions
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Bytes Per Flop Ratio

%

Stream

RandomAccess
Very High

DGEI 1M, HPL 0.5-2 12-24
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Name Complexity | computation Ratio
SYMGS O(nrows * 27(2'nnzfrow | 27 ( nnz/row * (2"8+4) + 10.32
nnz/row) +3)" nrows 5"8+2"4 ) "nrows
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The path memory data takes to its destination...

DRAM
Low Off High On
Memory BW Memory BW
Bank 1
Ship Read
32B 2048B
Bank 2
CPU Output Ship Read
2-8B 32B 2048B
Bank 8
Ship Read
32B 2048B
~25 Gh/s ~4.000 Gb/s

Narrow busses are driven by system/package cost, power and
standardization.
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What if.... We revisit the Hybrid Memory Cube (HMC)
concept with advanced packaging innovations

10s of TB/s at significantly reduced energy/bit over state of the art

3D-stacked memory and logic for optimized bandwidth and energy efficiency
Increased bandwidth at lower power enabled by hybrid bonding

Significantly greater number of connections between logic and memory
Co-optimized logic and memory architectures and designs




Stacking RAM w/logic reverses the FLOP/BW mismatch
(The example assumes GPT-3, batch size of 1, 3.5ms latency)

Design Target for
GPT-3 (example) Memory-on-Logic
Optlmlzed Solution

Memory Bandwidth 100TB/s 0.82TB/s

Est. Energy/bit 1.5pJ/b

B o --

e o __
Memory System Power at >350GB / >50TB/s Target: <= 800W _—

With a change in the memory/logic relationship, an
Improvement in energy efficiency can be achieved.

Adicron



Co-Locating Memory and computing for highest efficiency.
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Approaching the efficiency of biological systems...
There is roughly a five order of magnitude in Energy efficiency gap that needs to be closed

Power Efficiency Scaling
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