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 Perovskite vs fluorites (each with challenges)
 Ferroelectric memories: FRAM, FeFET, FTJs 
 Comparison of memory technologies
 Thermal processing for BEOL integration
 Compute-in-memory (CIM) accelerators
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Traditional: Perovskite-based (status quo for ~ 60 years)

• Non-centrosymmetric structure 
• 2 stable polarization states 

switchable by an applied E field
• Difference in remnant polarization 

(Pr) through domain states

A. Von Hippel et. al., Eng. Chem. (1946)

ABO3
S. Trolier-McKinstry et. al., Am. Ceram. Soc. Bull.(2020)

Oscillographic trace

J. Su et. al., J Mater Sci: Mater Electron, (2019)



Traditional: Perovskite-based (status quo for ~ 60 years)

• Thick (> 70nm)
• Limited scaling (130 nm node)
• Low coercive field (Ec)  ~100kV/cm
• Limited retention
• Not CMOS compatible

S. Trolier-McKinstry et. al., Am. Ceram. Soc. Bull.(2020)

S.H. Choi et. al., Integr. Ferroelectr. (2006) 

PbTiO3-PbZrO3(PZT) ABO3

 PZT-based 1T1C memory in production for > 20 years FeRAM (Fujitsu), FRAM (TI), F-RAM (Infineon)
 Low density (4KB- 128 MB) niche applications ( IC card, robotic, automotive applications, ...)



Fluorite-structured ferroelectrics (~2011)

• Thin (sub 3 nm)
• Fast switching  (sub-ns)
• Scaling (22 nm & beyond)
• High  Ec (~1M V/cm)

• Good retention
• CMOS compatible
• ALD growth

HfO2-based 

HfO2 discovered to be ferroelectric in 2006 (Tim Böscke at 
Qimonda, formerly Infineon), published results in 2011
Böscke, T. S. et al., Appl. Phys. Lett., (2011)

H.-J. Lee et al., Science (2020) 



• Monoclinic phase is the 
room-temperature bulk 
stable phase.

• Phases separated by 
energies of 10s of meV

• Rapid heating and cooling 
with capping layers (e.g. TiN) 
stabilizes ferroelectric phase

• Dopants ( Zr, Al, Gd, La, Si, Sr, 
and Y )

• Field induced 
transformations

• Reliability issues

Plethora of phases present in HfO2 system

Schroeder, U. et al., Nat Rev Mater. (2022).

~1700 oC

~2500 oC



Ferroelectric memories: Operation principles

• Commercialized for > 20 years
• Destructive read
• High endurance > 1015

• Intensive R&D by Semiconductor Industry
• Nondestructive read, multiple bits
• High endurance  challenging

FeRAM (1T1C)
Ferroelectric Random-Access Memory

“DRAM-like”

FeFET(1T)
Ferroelectric Field Effect Transistor

“FLASH-like”

FTJ(1R)
Ferroelectric Tunnel Junction

“Diode-like”

• Academia R&D
• Asymmetric free carrier 

screening lengths 



Hf0.5Zr0.5O2(HZO) Ferroelectric Field Effect Transistor (FeFET)

Multi-state HfO2-based FeFET memories 

I Stolichnov et. al., ACS Appl. Mater. Interfaces (2018)



Scaled HfO2-based FeFETs

 Demonstrated at the 22/28 nm node

S. Dünkel , IEDM 2017, 22 nm FDSOI CMOS

• MW of 1.5 V 
• Scaled FeFET cells 0.025 μm²
• Endurance cycles up to 105

K. Ni et. Al., T-ED, 2018
 3D NAND, GAA structures

K. Florent et. al., VLSI 2017, S-Y Lee et. al., JEDS 2021



Challenges of ferroelectric memories

3. Scaling and Density
Multi-bit per cellStochasticity

• Reduce write voltage to logic compatible levelMFIS (<109 cycles)MFM (> 1012 cycles)

• Reduced latency, 
energy consumption

• BEOL process 
temperature < 400 oC

BEOL: Back-end-of-line
FEOL: Font-end-of-line

1. Polarization variation/Endurance 2. High Write Voltage

4. 3D Integration

Storage capacity

ACS Appl. Mater. Interfaces 2018, H. Mulaosmanovic et al, EDL 2018



Comparison of memory technologies

 Impact of tech node on energy:
2Pr ~ 60 µC/cm 2 , 1.5 V

• 60F2, 130 nm (FRAM perov.) ~ 913 fJ
• 30F2, 22 nm  FeFET ~ 13 fJ
• Hypothetical 30F2, 5 nm ~ 4 fJ

 Pathways to attojoule switching not clear

 Advantages over eSRAM in energy 
efficiency will depend on technology 
node, compute to standby ratio 
(application specific)

 Need to reduce voltage, improve 
endurance

A. I. Khan et. al., Nature Electronics, 2020

NRJohnson
Typewriter
A. I. Khan et. al., Nature Electronics, 2020



• Can bring memory and logic closer by stacking 
memory on top of processing nodes

• Decrease energy consumption and latency

• Embedded memory in BEOL stack

FEOL logic nodes

BEOL memory nodes

Inter-tier 
dielectrics SiO2

Dutta, S. et al., IEEE Electron Device Lett. 43, 382–385 (2022).

Back-end-of-line (BEOL) flash thermal processing

How not to damage BEOL components?
< 400 oC

~ 1000 oC

 Confine thermal transients to upper layers
 Ultra-fast thermal treatments



Back-end-of-line (BEOL) flash thermal processing



The Memory Demand of Modern AI Models
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GPT-3 (175GB)

Turing-NLG (17.2GB)
T5 (11GB)

Megaton-LM (8.3GB)

GPT-2 (1.5GB)

BERT-L(340MB)
AmoebaNet(155MB)

EfficientNet-B7(155MB)ELMo (94MB)

SENET (146MB)VGG-19 (144MB)

ResNet-152 (60MB)

Alexnet (61MB)

DLRM-2020 (100GB)

DLRM-2021 (1TB)
DLRM-2022 (2TB)

Compute-in-memory accelerators

Modern AI models can have more than a TB of parameters
With on-chip memory limited by SRAM size, there is an extraordinary volume of data traffic between 

processor and off-chip memory that adds to energy consumption  and latency. 
 Compute-in-memory (CIM) is a promising approach to overcome memory bottleneck where compute is 

moved closer to the data residing in the memory

Shimeng Yu (Georgia Tech)

DLRM (Deep Learning Recommendation Model)



FeFETS for compute-in-memory accelerators
Pseudo-crossbar array

• Endurance (for training)
• High write voltage 
• Linearity (for training), stochasticity of conductance tuning
• Density (Legacy nodes, pseudo-crossbar array) 
• Area-hungry peripheral circuits (e.g., level shifters (e.g., 45%), 

high-precision ADC, shift-&-add and buffers)
• How to leverage multi-bit density with peripheral logic scaling 

(device to system co-optimization)

HfO2-based FeFETs

• Nonvolatile conductance tuning
• Low switching energy
• Fast read/write
• ALD w/deeply scaled CMOS nodes

Advantages
Challenges



S. Dutta, (IEDM) 2020.

 Memory arrays in the BEOL on top of FEOL CMOS, peripheral circuits
 Significant advantage in terms of area, energy and latency 

Monolithic 3D compute-in-memory



NeuroSim Framework: Benchmarking IMC performance

• Open-source simulator for “in-memory compute” interfaced 
with PyTorch

• Wide technology choices: SRAM, emerging NVM (RRAM, 
MRAM, FeFET, etc.) Periphery and interconnect accounted

• Widely used in academia worldwide (>300 registered users) 
• Used by industry researchers from SRC/DARPA JUMP sponsors 

(Intel, TSMC, Samsung, SK Hynix, etc.)

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

• Validation with IMC prototype with TSMC 40nm RRAM (<2% error)

VGG =Visual Geometry Group (CNN)

https://github.com/neurosim

 Hierarchical simulation framework that covers the 
device to algorithms to investigate design trade-offs

Shimeng Yu (Georgia Tech)

• VGG-8 model on CIFAR10 dataset (60,000 32x32 color 
images), with 8-bit weight and 8-bit activation precision.

S. Dutta et al.,  IEDM 2020X. Peng et al., IEDM 2019 and 2020 W. Li, et al. CICC 2020

https://github.com/neurosim


• Limited gain by technology scaling (e.g. TPU), need new approaches: in-
memory computing. 

• 7nm SRAM TOPS/W is high, but suffers from leakage when the standby is 
frequent at edge.

• 22nm FeFET design shows superior TOPS/W, thanks to its high resistance (Ron) 

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

Side courtesy Shimeng Yu (Georgia Tech)

Inference H/W Benchmark Results – TOPS/W & TOPS/mm2
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Roadmap of FeFET Improvements 

S. Dutta, et al. IEDM 2020
(by courtesy of Suman Datta)

Monolithic 3D Bit Cell at 22nm
Reduce write 
voltage

2b/cell 4b/cell

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

Side courtesy Shimeng Yu (Georgia Tech)



Summary

Acknowledgement
Prof. Shimeng Yu (Georgia Tech)

HfO2-based ferroelectrics offer potential for deeply scaled (22 nm and beyond), low switching 
energy (~1fJ/bit), non-volatile, fast (sub-ns), multi-bit CMOS compatible memories

FeFET needs to reduce write voltage to logic compatible level, increase cycling endurance, 
further increase multi-bit per cell, and manage its variability/reliability, particularly in deeply 
scaled structures

Monolithic 3D integration of BEOL memory and transistors has to overcome thermal processing 
challenges while maintaining high performance of devices
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