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 Perovskite vs fluorites (each with challenges)
 Ferroelectric memories: FRAM, FeFET, FTJs 
 Comparison of memory technologies
 Thermal processing for BEOL integration
 Compute-in-memory (CIM) accelerators

Outline



Traditional: Perovskite-based (status quo for ~ 60 years)

• Non-centrosymmetric structure 
• 2 stable polarization states 

switchable by an applied E field
• Difference in remnant polarization 

(Pr) through domain states

A. Von Hippel et. al., Eng. Chem. (1946)

ABO3
S. Trolier-McKinstry et. al., Am. Ceram. Soc. Bull.(2020)

Oscillographic trace

J. Su et. al., J Mater Sci: Mater Electron, (2019)



Traditional: Perovskite-based (status quo for ~ 60 years)

• Thick (> 70nm)
• Limited scaling (130 nm node)
• Low coercive field (Ec)  ~100kV/cm
• Limited retention
• Not CMOS compatible

S. Trolier-McKinstry et. al., Am. Ceram. Soc. Bull.(2020)

S.H. Choi et. al., Integr. Ferroelectr. (2006) 

PbTiO3-PbZrO3(PZT) ABO3

 PZT-based 1T1C memory in production for > 20 years FeRAM (Fujitsu), FRAM (TI), F-RAM (Infineon)
 Low density (4KB- 128 MB) niche applications ( IC card, robotic, automotive applications, ...)



Fluorite-structured ferroelectrics (~2011)

• Thin (sub 3 nm)
• Fast switching  (sub-ns)
• Scaling (22 nm & beyond)
• High  Ec (~1M V/cm)

• Good retention
• CMOS compatible
• ALD growth

HfO2-based 

HfO2 discovered to be ferroelectric in 2006 (Tim Böscke at 
Qimonda, formerly Infineon), published results in 2011
Böscke, T. S. et al., Appl. Phys. Lett., (2011)

H.-J. Lee et al., Science (2020) 



• Monoclinic phase is the 
room-temperature bulk 
stable phase.

• Phases separated by 
energies of 10s of meV

• Rapid heating and cooling 
with capping layers (e.g. TiN) 
stabilizes ferroelectric phase

• Dopants ( Zr, Al, Gd, La, Si, Sr, 
and Y )

• Field induced 
transformations

• Reliability issues

Plethora of phases present in HfO2 system

Schroeder, U. et al., Nat Rev Mater. (2022).

~1700 oC

~2500 oC



Ferroelectric memories: Operation principles

• Commercialized for > 20 years
• Destructive read
• High endurance > 1015

• Intensive R&D by Semiconductor Industry
• Nondestructive read, multiple bits
• High endurance  challenging

FeRAM (1T1C)
Ferroelectric Random-Access Memory

“DRAM-like”

FeFET(1T)
Ferroelectric Field Effect Transistor

“FLASH-like”

FTJ(1R)
Ferroelectric Tunnel Junction

“Diode-like”

• Academia R&D
• Asymmetric free carrier 

screening lengths 



Hf0.5Zr0.5O2(HZO) Ferroelectric Field Effect Transistor (FeFET)

Multi-state HfO2-based FeFET memories 

I Stolichnov et. al., ACS Appl. Mater. Interfaces (2018)



Scaled HfO2-based FeFETs

 Demonstrated at the 22/28 nm node

S. Dünkel , IEDM 2017, 22 nm FDSOI CMOS

• MW of 1.5 V 
• Scaled FeFET cells 0.025 μm²
• Endurance cycles up to 105

K. Ni et. Al., T-ED, 2018
 3D NAND, GAA structures

K. Florent et. al., VLSI 2017, S-Y Lee et. al., JEDS 2021



Challenges of ferroelectric memories

3. Scaling and Density
Multi-bit per cellStochasticity

• Reduce write voltage to logic compatible levelMFIS (<109 cycles)MFM (> 1012 cycles)

• Reduced latency, 
energy consumption

• BEOL process 
temperature < 400 oC

BEOL: Back-end-of-line
FEOL: Font-end-of-line

1. Polarization variation/Endurance 2. High Write Voltage

4. 3D Integration

Storage capacity

ACS Appl. Mater. Interfaces 2018, H. Mulaosmanovic et al, EDL 2018



Comparison of memory technologies

 Impact of tech node on energy:
2Pr ~ 60 µC/cm 2 , 1.5 V

• 60F2, 130 nm (FRAM perov.) ~ 913 fJ
• 30F2, 22 nm  FeFET ~ 13 fJ
• Hypothetical 30F2, 5 nm ~ 4 fJ

 Pathways to attojoule switching not clear

 Advantages over eSRAM in energy 
efficiency will depend on technology 
node, compute to standby ratio 
(application specific)

 Need to reduce voltage, improve 
endurance

A. I. Khan et. al., Nature Electronics, 2020

NRJohnson
Typewriter
A. I. Khan et. al., Nature Electronics, 2020



• Can bring memory and logic closer by stacking 
memory on top of processing nodes

• Decrease energy consumption and latency

• Embedded memory in BEOL stack

FEOL logic nodes

BEOL memory nodes

Inter-tier 
dielectrics SiO2

Dutta, S. et al., IEEE Electron Device Lett. 43, 382–385 (2022).

Back-end-of-line (BEOL) flash thermal processing

How not to damage BEOL components?
< 400 oC

~ 1000 oC

 Confine thermal transients to upper layers
 Ultra-fast thermal treatments



Back-end-of-line (BEOL) flash thermal processing



The Memory Demand of Modern AI Models
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GPT-3 (175GB)

Turing-NLG (17.2GB)
T5 (11GB)

Megaton-LM (8.3GB)

GPT-2 (1.5GB)

BERT-L(340MB)
AmoebaNet(155MB)

EfficientNet-B7(155MB)ELMo (94MB)

SENET (146MB)VGG-19 (144MB)

ResNet-152 (60MB)

Alexnet (61MB)

DLRM-2020 (100GB)

DLRM-2021 (1TB)
DLRM-2022 (2TB)

Compute-in-memory accelerators

Modern AI models can have more than a TB of parameters
With on-chip memory limited by SRAM size, there is an extraordinary volume of data traffic between 

processor and off-chip memory that adds to energy consumption  and latency. 
 Compute-in-memory (CIM) is a promising approach to overcome memory bottleneck where compute is 

moved closer to the data residing in the memory

Shimeng Yu (Georgia Tech)

DLRM (Deep Learning Recommendation Model)



FeFETS for compute-in-memory accelerators
Pseudo-crossbar array

• Endurance (for training)
• High write voltage 
• Linearity (for training), stochasticity of conductance tuning
• Density (Legacy nodes, pseudo-crossbar array) 
• Area-hungry peripheral circuits (e.g., level shifters (e.g., 45%), 

high-precision ADC, shift-&-add and buffers)
• How to leverage multi-bit density with peripheral logic scaling 

(device to system co-optimization)

HfO2-based FeFETs

• Nonvolatile conductance tuning
• Low switching energy
• Fast read/write
• ALD w/deeply scaled CMOS nodes

Advantages
Challenges



S. Dutta, (IEDM) 2020.

 Memory arrays in the BEOL on top of FEOL CMOS, peripheral circuits
 Significant advantage in terms of area, energy and latency 

Monolithic 3D compute-in-memory



NeuroSim Framework: Benchmarking IMC performance

• Open-source simulator for “in-memory compute” interfaced 
with PyTorch

• Wide technology choices: SRAM, emerging NVM (RRAM, 
MRAM, FeFET, etc.) Periphery and interconnect accounted

• Widely used in academia worldwide (>300 registered users) 
• Used by industry researchers from SRC/DARPA JUMP sponsors 

(Intel, TSMC, Samsung, SK Hynix, etc.)

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

• Validation with IMC prototype with TSMC 40nm RRAM (<2% error)

VGG =Visual Geometry Group (CNN)

https://github.com/neurosim

 Hierarchical simulation framework that covers the 
device to algorithms to investigate design trade-offs

Shimeng Yu (Georgia Tech)

• VGG-8 model on CIFAR10 dataset (60,000 32x32 color 
images), with 8-bit weight and 8-bit activation precision.

S. Dutta et al.,  IEDM 2020X. Peng et al., IEDM 2019 and 2020 W. Li, et al. CICC 2020

https://github.com/neurosim


• Limited gain by technology scaling (e.g. TPU), need new approaches: in-
memory computing. 

• 7nm SRAM TOPS/W is high, but suffers from leakage when the standby is 
frequent at edge.

• 22nm FeFET design shows superior TOPS/W, thanks to its high resistance (Ron) 

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

Side courtesy Shimeng Yu (Georgia Tech)

Inference H/W Benchmark Results – TOPS/W & TOPS/mm2
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Roadmap of FeFET Improvements 

S. Dutta, et al. IEDM 2020
(by courtesy of Suman Datta)

Monolithic 3D Bit Cell at 22nm
Reduce write 
voltage

2b/cell 4b/cell

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).

Side courtesy Shimeng Yu (Georgia Tech)



Summary

Acknowledgement
Prof. Shimeng Yu (Georgia Tech)

HfO2-based ferroelectrics offer potential for deeply scaled (22 nm and beyond), low switching 
energy (~1fJ/bit), non-volatile, fast (sub-ns), multi-bit CMOS compatible memories

FeFET needs to reduce write voltage to logic compatible level, increase cycling endurance, 
further increase multi-bit per cell, and manage its variability/reliability, particularly in deeply 
scaled structures

Monolithic 3D integration of BEOL memory and transistors has to overcome thermal processing 
challenges while maintaining high performance of devices
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