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CMOS Memories

B Built on a standard CMOS Logic process — do not require additional masks, process
integration steps

B Use CMOS Logic supply voltages & comparable device threshold voltages in bit cell
transistors

m Delivers highest access/cycle time performance (<200ps), lowest operating voltages
(<0.5V) of any semiconductor memory technology - highest energy efficiency across all
semiconductor memory technologies

m Considered ‘Foundational IP’ — arrays present in practically every chip manufactured
m Variants: 6T SRAM, 2-port 8T Register File, Dual-port 8T SRAM, CIM, TCAM arrays

®m Industry-typical peripheral circuit architectures used around CMOS memories are
inefficient and irrelevant to addressing limitations seen today

m Energy-efficiency scaling requires breakthroughs in CMOS memory circuits — voltage
scaling knob increasingly difficult and inadequate



Energy Inefficiencies - Write

T-Y Chang et al, IEEE Journal of Solid-State
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Speed Degradation with Differential Sensing
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Energy Inefficiencies from Differential Sensing

= Variability along bitpath: lg.p, BL 1 ., SA offsets, timing uncertainty b/w WL and SAE
edges - limit min BL signal development time in slowest bit cell

= Min BL signal development time in slowest bit cell is sufficient to drain most of
precharge from other active BLs - substantially increasing energy overhead of
variability in bitpath

= Neither of the expected benefits of differential sensing — fast action or small voltage

swing to resolve data are realized
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Read Assist degrades energy efficiency further

= WL Under Drive makes the slowest bit cell much slower

= Gives more time to all other bit cells to discharge more of the Precharge

= WLUD for half-select cells during Write, degrades WM improvements from WA

= WLUD AV of -100mV on WL increases WL =>BL delay by over 2X w PG NFET V; =V, + 40
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Where is the Energy going?
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https://ieeexplore.ieee.org/document/6757323
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CMOS Memories in Accelerators, GPUs

1.

2.

Power Consumption (W)

Over 2/3 of ASIC accelerator Energy (switching & leakage) consumed
by SRAM buffers and Register File (RF) arrays

Almost 70% of MAC energy in a GPU consumed by RF SRAM arrays
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Memory Circuit Solutions Proposed

m Circuit solutions to holistically improve all metrics — circuit speed, energy
dissipation, R/W margins, reliability (without/with marginal) area overheads
and substantial reductions in leakage — using new circuits that

B Harvest the information token of data on chip: electric charge when overwriting,
moving or storing data

m Self-limiting, self-disabling & self-requlating circuits to eliminate most of the
inefficiencies seen with industry-typical circuit architectures

m 5X reduction in active energy without lowering VDD, 2X improvement in
access/cycle time without raising VDD

B Above improvements at component level without requiring changes to the bit cell
or the CMOS process



Simple circuits to harvest/use harvested charge

m Full-swing, no reduction in propagation delay, area overheads, sub CV?

switching energy!

®m High fan-out circuits, large loads — recover 30+ % of energy
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Simple circuits to harvest/use harvested charge

m Logic dual of harvesting circuits — use harvested charge to partially drive 021
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CMOS 6T SRAM Arrays

m Variability tolerant, higher cell stability, 2X+ faster access times, 4-5X lower
Read power, 30+ % lower Write power
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CMOS SRAM Cell Stability

m With less Read current, proposed
sensing scheme is 2X faster, 4-5X
lower active power from self-limiting,
self-disabling discharge of BLs

m Self-limiting & self-disabling action
increases read stability during WL
active period with retention stability
when Read current disabled with WL
active
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CMOS 8T Register File Arrays
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CMOS 8T Register File Arrays

Leakage paths along decoupled Read stack in

conventional arrays (top) and in the arrays with

—0| PCH proposed circuits(bottom). In proposed scheme, unlike
conventional arrays, leakage is independent of # of bit

ELBL cells per LBL, of NFET Read Stack device VT and of
R 5 data stored in bitcell
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Comparisons with Reported CIM macros & Al Hardware

Metis 8T SRAM based Digital CIM array

CIM Arrays 2020 This work
using 8T SRAM by (Simulations)
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Array Size 4Kb
Bit Precision 4b/4b 4b/4b
Peak MAC
Throughput (GOPS) 3r2 160
Peak MAC Energy
Efficiency (TOPS/W) 611 >5000
MAC Comp. Density
(TOPS /mm?) 116 >116

Edge Intelligence Cloud

104
n
3 ®
A10 !. A ASIC(digital) chip
(g [ ¥  CIM-SRAM Macro
O 1 g‘ @ CIM-RRAM Macro
':, 5
w10
-
D
0710
-
210
—
= 2 d g
10-2 ,g’ v /,é »
.~" & " .~ Reported CIM macro
10-3 .’: 2iga -
> 0 10° 40 40 10 1 +H* 10 10

Power (W)

Rest of figure from: Memory Centric Computer Workshop at

the 2021 DARPA ERI Summit, Oct 19t 2021

16



Summary

New Circuit architectures enabling fast, energy efficient data movement in CMOS
memories are proposed

Proposed circuits with self-limiting, self-disabling and self-regulating behavior also
lower substantial overheads in latency and energy consumption seen in
conventional/Industry-typical circuit architectures for CMOS Memories

Simulations with 16FF parameter decks demonstrate 5X reduction in active energy
and 2X improvements in latency across all CMOS memories using proposed circuits —
an order of magnitude improvement in the Energy Delay Product

Impact to energy and performance bottlenecks of accelerators for Al workloads are
significant — 70% of the active power dissipations from a MAC operation impacted
with above improvements

With no changes required to the bit cell, CMOS process or (nominal) operating
voltages, demonstration of proposed circuits in hardware prototypes is feasible
within 9-12 months
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